Implementation and Verification for the Communication System in a Modular Robot Architecture

Cassandra E. Helms

Colorado State University

Advised by Wim Bohm

cehelms@rams.colostate.edu

ABSTRACT

New software architecture for ER1 Evolution Robots was written in response to limitations found in old architecture. The new architecture was created with a main objective of being more flexible. Now the new architecture must be tested and verified to reduce the number of failures that may occur during its use in outreach. A good way to do this is by developing a test simulator that compliments the middle layer of the software. The simulation is based on sequences of events emitted from the system. Observing the validity of the sequences of these events in different scenarios by seeing whether the sequences are elements of an “accepted sequence” language will help developers decide if the new architecture meets its objectives and identify failures in system behavior.

Keywords

Robot architecture, robot communication, communication system, real time simulation, middle layer.
1. INTRODUCTION

An Evolution ER1 robot consists of a metal frame that can hold a laptop with three wheels on its base. The two main wheels are driven by step motors which take commands from a robot processing unit attached to the frame; a web camera is also commonly placed on top. All devices on the robot, including the processing unit, interface with the laptop via separate USB connections. The user on the laptop sends instructions to the robot devices through software called robot architecture.

Many of the robot’s capabilities are determined by the behavior of the architecture and the commands offered to the user through the architecture API. This project focuses on rebuilding said ER1 architecture from the bottom up, so to speak; in order to escape limitations exhibited by original architecture, new software was created at the device layer and the middle layer to give the existing API more flexibility in terms of what a robot is and how a user can control it. Some of the limiting factors of the original architecture include (but are not limited to) a robot having to consist of two wheels, a camera and a speech module, and a requirement for the robot architecture to be running on the robot laptop itself during use.

The following objectives were agreed on in response to these limitations: a robot should be able to have any combination of devices within a realistic limit on the number of devices, and the architecture should be able to run on a separate machine from the robot laptop. The architecture would also, ideally, dynamically detect the presence of devices before and during robot use.

The majority of this new architecture software has already been written; what’s left is verifying that it works before it’s released. This will be done by verifying the middle layer of the architecture since it’s a critical component in the execution of the whole system. Because the entire purpose of the middle layer is to relay commands from one location to another (it can be described as event-driven) it is practical to observe the relaying of commands throughout the system using events and timestamps.

2. ARCHITECTURE LAYERS

[image: image2.png]

The new robot architecture consists of three layers: the top layer is the API layer, which will serve the end-user; the bottom layer is the device layer, which translates commands from the API and delivers them to the devices via modules; and the middle layer is the Communication System layer, which is responsible for routing commands from the API to the device layer.

In order to address the need for commands to be sent in parallel, the Communication System makes use of separate threads for each device, which are spun off by a “director” thread. The director thread spins off device threads in response to updates it receives from a hardware detection application on the robot (shown in Figure 3). Commands are sent to device modules via socket. Threads and sockets are critical programming mechanisms in the case of the Communication System; threads allow operations to be executed in parallel with one another inside a process, and sockets let processes talk to each other over a network. Using sockets for communication allows us to run the architecture on a separate machine from the robot laptop, and individual threads for each device helps make the system real-time.

[image: image1.png]

Figure 3: Classes inside the Communication System. APIAgent, Device, DeviceSender, DeviceReceiver and DeviceDirector are classes; all classes beginning with “Device” are threads specific to that device. Device threads are stored in the main CommSys class (not shown).
3. VERIFYING THE COMMUNICATION SYSTEM

The Communication System must work in a real life situation. Some examples of real life situations include using a robot in a larger project with other robots, or taking the robots on outreach excursions. In such situations the failure of a robot means the failure of a larger endeavor, which is unacceptable. In the spirit of preventing failure, we want to have confidence that the robot will work. This confidence can be improved by verifying the architecture through simulation; in our case, we will focus on verifying the Communication System. The Communication System is an integral part in every instance of the architecture, thus making it a logical component to verify if our goal is to have confidence in the architecture.

At this point in the project, the design and most of the implementation of the Communication System is finished. To verify its functionality, two questions must be asked: 1) does it fulfill its overall objectives? and 2) does it operate in the manner developers expect it to? Let us define the basic objectives and expectations of the software as follows:

3.1 Overall Objectives

1. The system must allow for a more flexible definition of a robot: the Communication System should sustain any combination of devices, provided devices do not interfere with each other, and should be robust enough to handle a realistic number of devices. The goal for this project is to successfully serve up to seven device modules on one robot, where success is decided on a paradigm of no loss of information in the system and no untimely responses.

2. A user should be able to control a robot from a remote machine. The Communication System must be written in such a way that it can be run on the machine identified as the robot, or on a separate, network-connected machine with a modern amount of parallel processing power.

3. The Communication System, within the rest of the architecture, must be able to run for a significant amount of time without crashing. The goal for this project is to observe an instance of the Communication System serve a moderate amount of traffic for two hours.

3.2 Developer Expectations for Communication System Behavior

1. The Communication System should be able to autonomously and logically respond to device detection messages.

2. The Communication System will route commands from the user API to the appropriate device module if it’s available, else return a message stating the device is invalid if the device is not found.

3. The Communication System will route commands from device modules back to the API.

4. All routing that occurs will be organized by device; once a message enters the path of a certain device, it cannot stray onto the path of another device.

5. Interleaving of two or more distinguished devices’ messages on a timeline is allowed (we must serve the devices in parallel).

6. Each device has a queue which allows for multiple messages in a device path at one time, which will be sent at the discretion of the DeviceSender class.

4. ACCEPTED EVENT SEQUENCES

To verify that a message is passing through the system in an acceptable way, each class will emit an event when it receives and sends a message. The events will be of the form:
[Time].[Location/Class].[Message_ID].[Event_Type].[Device_Path].[Message_Value]

4.1 Event Definitions

[Time] = the current system time in milliseconds;

[Location] = the Java class where the event is being generated;

[Message_ID] = the Communication System-wide, unique message ID generated for that command;

[Event_Type] = possible values are “enter”, “receive”, “send” and “exit” (where only the APIAgent uses the “enter” and “exit” values with respect to events from the API);

[Device_Path] = the command has to know what device it will go to; it chooses among the available device ID numbers in the Communication System;

[Message_Value] = the actual command to be sent to the device.

4.2 Event Sequences

A message can enter the system in two places: the message enters from above – the API wants to send a command to a device; or the message enters from below – the device wants to return information to the API. Both of these locations must be able to assign a message ID number to an incoming command.

From the APIAgent, the correct sequence of locations (or Java classes) that the message visits would be through the APIAgent class (enter, send), through the Device class corresponding to the [Device_Path] field (receive, send), then through the DeviceSender class corresponding to the same path field (receive, send) and on to the device layer.

From the DeviceReceiver class (receive, send) the message will be given straight to the APIAgent (receive) and will eventually return to the API itself (exit).

We can expect to see events for different messages interleaving, because devices are serviced in parallel to each other. It still needs to be investigated whether events on the same device path (going to the same device) are allowed to travel in parallel.

5. PROJECT DIRECTION

Some major tasks related to this project, such as defining a system of events, have already been completed. The following list demonstrates how these initial tasks fit into the direction of the rest of the project.

1. Decide the format of system events – must include what class the event is emitted from, whether it’s a send or receive event, a timestamp, the id number of the message, the “bridge” (or what path it’s traveling through the system), and the value of the message.

2. Design a language that defines which sequences of events are acceptable – determine a set of rules for the language and work out a way to represent an event timestamp moving through the system legitimately.

3. Implement event gathering in the system – have each class add the event to a data structure at runtime, and all classes will dump the data structure into a file or to the screen at quit time.

4. Create a graphics engine that will simulate system events when given an input of event timestamps in a file – do this in something like C++/GLUT. Needs to be understandable for a wide audience.

5. Analyze the event timestamps to validate the architecture – assess the results of timestamp collection compared to the original goals. Is there more work to be done?

6. Report results – how many goals were met, and if they weren’t, what caused the goals not to be met (i.e. how can it be fixed?)

6. RELATED WORK

The act of breaking a system into components based on function (or Java classes in the case of the Communication System) and tracking movement of variables through shared memory and message queues is not dissimilar to the concepts introduced by the Real-Time Design System Model, explained in A Formal Design Notation for Real Time Systems [2]. More study of this source is required to examine the possibilities of having a more formal notation for events in the Communication System than the one discussed in this paper. Furthermore, Silberschatz, Galvin and Gagne discuss some of the overarching concepts of distributed and real time systems in Operating System Concepts (8th edition) [1].
7. FINAL PRODUCTS

Some preliminary products of this project will be the event timestamp logs associated with the Communication System and a script that decides if the log contents are in a valid sequence. The logs will be utilized by a graphical simulator, which can demonstrate the functionality of the Communication System to other developers or a broader non-technical audience. A graphical representation of the event timestamps will also help to more intuitively verify the correct behavior of the system. The final product will be a working robot architecture that can be utilized and updated as needed by future robot developers. Findings can be presented at CSU’s Celebrate Undergraduate Research and Creativity event in the spring.

8. REFERENCES

[1] Silberschatz, A., Galvin, P. and Gagne, G. Operating systems concepts. John Wiley & Sons Inc (2009).
[2] Felder, M., and Pezzé, M. A formal design notation for real time systems. ACM Transactions on Software Engineering and Methodology 11, 2 (Apr. 2002), 149-190.
[3] ER1 personal robot system [Online]. Available at: http://www.evolution.com/er1/
� INCLUDEPICTURE "http://www.evolution.com/images/er1_robot/r_home_bot_right" \d��� Figure � SEQ "Illustration" *Arabic �1�: ER1 Personal Robot System [3]

�Figure � SEQ "Illustration" *Arabic �2�: A high-level view of architecture layers.

2010 Colorado Celebration of Women in Computing

[image: image3.png]API

Software
Components

7]
ol
V4
Y 4
ERL ERL
whess Gman Spedes e
Module Module

ER1 Wheels Camera Speakers ER1 Gripper

