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ABSTRACT 
The performance of many scientific calculations is limited by the 
cost of data movement inside linear algebra kernels.  We 
developed a compiler called Build to Order (BTO) that tunes 
kernels to reduce data movement through the memory hierarchy 
resulting in large speedups.  Our compiler accepts annotated 
MATLAB code and outputs C code with varying levels of loop 
fusion.  In this paper, we present an empirical analysis of the 
fusion of vector operations with matrix operations.  We show 
using statistical techniques that fusing vectors accessed only once 
by an operation is not profitable unless doing so enables the 
fusion of matrix operations.  However, vectors accessed multiple 
times can be profitable to fuse.  We discuss the implications of 
these results to the enumeration and analysis phases of the BTO 
compiler, and explain how we plan to use them to reduce the 
runtime of these phases. 
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1. INTRODUCTION 
Linear algebra calculations contribute significantly to the runtime 
of applications in various scientific fields, such as acoustic 
scattering, computational fluid dynamics, earthquake engineering, 
and structural analysis [1, 9, 10, 16].  Data movement often limits 
the performance of the linear algebra calculations used in these 
programs [1]. Tuning these linear algebra calculations to reduce 
data movement through the memory hierarchy often results in a 
corresponding decrease in routine runtime [8, 13]. 

One technique frequently used to reduce memory traffic of linear 
algebra routines is loop fusion, which combines multiple loops of 

calculations that access the same data into one [12]. Combining 
loops that access the same data increases the spatial and temporal 
locality of data accesses.  For linear algebra calculations, the 
result is routines that can perform over 100% faster than 
comparable unfused routines [18]. 

While fused routines create significant speedups, producing tuned 
kernels for all routines that could benefit from fusion is 
impractical because the number of kernels that would benefit is 
immense.  Also, constantly changing architectures require 
updating these kernels often since the optimal amount of fusion 
varies on different architectures.   
Auto-tuning is a way to solve the issues of updating linear algebra 
kernels for ever-changing machines.  It has been applied to such 
other mathematical kernels as fast Fourier transforms [11] and 
matrix multiplication [4]. Auto-tuned codes often perform more 
efficiently than hand-optimized versions of the same calculation 
[19]. 

There are several ways to automatically create efficient fused 
linear algebra calculations.  Vuduc et al. produce efficient 
versions of three different fused sparse matrix-vector calculations 
within the Optimized Sparse Kernel Interface (OSKI) [17].  
PLUTO [6] performs fusion using a general purpose compiler 
within the polyhedral model for C programs.  Qasem has devised 
a method for general purpose Fortran codes [15]. 
We use a different approach to generate fused kernels.  Our 
compiler Build to Order (BTO) takes in a subset of MATLAB, 
applies fusion to the kernels and outputs optimized kernels in C 
[2].  By using MATLAB as input, we are able to generate our own 
loops that traverse data structures optimally.   Also, the higher 
level input is easier for a user to learn and use.  Finally, by using 
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higher level input, we are able to optimize more aggressively as 
we have a more global view of the calculation being performed. 

Our approach differs from other automatic fusion techniques in 
another meaningful way.  The BTO compiler enumerates all legal 
combinations of loop fusion where the loops being fused share at 
least one common data element.  It then compares the 
performance of varying amounts of loop fusion using a hybrid 
analytic/empirical search strategy.  Within the hybrid approach, a 
memory model first analyzes the memory traffic produced by 
each version of the routine and then predicts a runtime for that 
version.  The best identified versions from the model are then 
empirically tested with the best selected to be output in C. 

One drawback of examining all versions to be fused is that the 
enumeration of all possible ways to perform a loop fusion 
calculation is NP-Complete [7].  For serial calculations within our 
compiler exploring the entire search space has been practical.  As 
we add other optimizations, that need to be enumerated in 
combination with loop fusion, such as blocking, and the 
generation of shared memory parallel codes, the search space 
continually increases.  At some point it may become infeasible to 
explore the entire search space. 

In this paper, we show that for certain calculations we can shrink 
the search space of routines considered while not sacrificing 
performance of the generated routine.  We perform tests on 
various routines and architectures and show that, in certain cases, 
the fusion of vector operations with matrix operations does not 
ever statistically significantly impact routine performance.  For 
every vector operation removed from the search space the number 
of versions of a routine enumerated is reduced in half.  

The rest of this paper is organized as follows.  In section 2, we 
describe the BTO compiler and explain how it converts input 
MATLAB into efficient C.  In section 3, we show how memory 
predictions often occur in groups.  An analysis of the impacts of 
vector operations within matrix operations is presented in section 
4.  The analysis includes the circumstances that the fusion of 
vector operations need not be considered.  Section 5 includes how 
we plan to remove certain vector operations from the enumerated 
search space in the BTO compiler.  Finally Section 6 presents 
conclusions and future work. 

2. BUILD TO ORDER (BTO) COMPILER 
The BTO compiler is a system that takes in a subset of annotated 
MATLAB and produces optimized kernels in C [2].  Its primary 
purpose is to create memory-efficient linear algebra kernels by 
reducing data traffic through the memory hierarchy.  To limit 
memory traffic, the compiler uses two forms of loop fusion.  
Another technique, data partitioning, enables two additional 
features: cache blocking, which can further reduce data movement 
and shared memory parallel codes [3].  BTO ensures the creation 
of efficient routines by exploring the entire search space of 
potentially profitable parallelization and optimization decisions. 
A secondary goal of the project is ease of use.  Ease of use is 
accomplished by automating the creation of efficient linear 
algebra routines from an accessible high level input. 
The BTO compiler works in phases.  In the first phase, it parses 
the input MATLAB and generates a data-flow graph of that input 
with loops represented.  Next, it performs the refinement phase 
where high level matrix and vector operations are turned into 
loops and scalars.  During the refinement phase a data partitioning 

algorithm creates loops that are used to create shared memory 
parallel code or cache blocks.  Data partitioning is applied to a 
single operation in a calculation and then propagated to other data 
structures that share a dependency with the partitioned operation.  
Once data partitioning decisions are complete, the compiler then 
performs graph lowering to generate loops. 
Next, the optimization phase applies loop fusion to the input 
routine.  First it enumerates all potentially profitable combinations 
of two forms of loop fusion, interleaving and pipelining, that can 
be applied to the input routine.  A fusion opportunity is potentially 
profitable when the loops share at least one data structure.  
Interleaving involves fusing loops of two independent operations.  
In this case, any data accessed by both operations are read once.  
Pipelining fuses two operations where one operation consumes the 
result of another.  Pipelining reduces the number of data traversals 
and removes the need for an intermediate array to store the result 
of the first operation.  
The optimization phase produces multiple versions of the input 
routine.  Each version differs from all others in at least one way.  
The ways they can differ are the amount of fusion, parallelization, 
the number of cache blocks and the sizes of the blocks.  These 
versions are then passed to the analytic phase. 

In the evaluation phase, all versions of a routine are tested using a 
two step process.  First, the analytic memory model is run on all 
versions, producing a sorted list of predicted runtimes.  Then the 
best routines are empirically tested with the fastest generated into 
C code.  The interaction between the two steps in the evaluation 
phase is user-controllable through runtime options.  The user can 
select a maximum amount of time that the compiler should spend 
empirically searching through routines.  Also, the user can specify 
that only those routines that the model predicts are within a 
certain threshold of the best predicted routine are empirically 
tested.  The two options can be combined. 

After the evaluation phase has identified the best version, the 
compiler outputs the code for it.  A user can then make calls to the 
produced kernel within their own program. 

3. SIMILAR RANKING OF ROUTINES 
The enumeration of routines to be considered and the testing of 
those routines using hybrid search dominate the runtime of the 
BTO compiler.  The model predicts small runtime differences 
between routines where vector operations are fused with matrix 
operations and the unfused variants.  For example, for the 
GESUMMV calculation shown in Table 1, the compiler 
enumerates twelve possible versions with different amount of 
fusion.  This calculation performs two matrix vector multiplies 
with the vector x multiplied by the matrices A and B.  The results 
of the multiplications are then multiplied by the scalars α and β 
before being summed and stored in y.  The model produces  

Table 1. Test Routines: Greek Letters Represent Scalars, 
Lower Case Letters Vectors, and Upper Case Letters Matrices 

Routine Name Calculation 

DGEMVT x = βATy + z 
w = αAx 

GEMVER 
B = A + u1v1

T + u2v2
T 

x = βBTy + z 
w = αBx 

GESUMMV y = αAx + βBx 
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Table 2. Machine Specifications 

Processor Speed Mem L1 L2 L3 

Intel Core 2 2.4 GHz 4 GB 32 KB 4 MB  

Intel Core i7 2.8 GHz 4 GB 32 KB 256 KB 8 MB 

AMD Opteron 2.6 GHz 3 GB 64 KB 1 MB  

Power PPC G5 2.3 GHz 8 GB 32 KB 512 KB  
 

predictions for the Core 2 system shown in Table 2 that all differ 
by less than 1%.  Actual performance differences for the best and 
worst of these versions are less than 3%. 

Also, when we graph the actual and predicted runtimes for the 
GEMVER calculation in Table 1 for the Core 2 system, we notice 
that many of the predicted and actual runtimes of routines are 
nearly identical.  For many pairs of routines with near identical 
performance and predictions, the only difference is the fusion of a 
vector operation with a matrix operation.   If this were always the 
case, the creating and testing the fusion of vector operations with 
matrix operations in the BTO compiler would be unnecessary. 
 

 
Figure 1: Predicted vs. Actual Runtime of the 648 Version of 
GEMVER Produced by the BTO Compiler 

4. DETEMERNING WHICH VECTOR 
OPERATIONS MATTER 
In this section, a vector operation refers to the fusion of loops 
where each loop accesses the same vector.  For the unfused 
GESUMMV calculation shown in Figure 2, there are three sets of 
loops that contain vector operations that can be fused.   Loops 1 
and 2 can be fused with loops 4 and 5 to reduce the number of 
accesses to the x vector, where each element is accessed n times.  
Loops 3 and 6 can both be fused with loop 7 reducing the number 
of accesses to each element of the t1 and t2 vectors by one. 
To determine whether fusing vector operations with matrix 
operations significantly impacts performance, we ran a series of 
tests.  The test results were then analyzed to determine the 
significance of fusing vector operations.  In this section. we first 
describe the environment, routines and methodology used to 

perform tests.  We then present the results of these experiments 
including a statistical analysis of the results when needed. 

  
Figure 2.  Unfused GESUMMV calculation. 

4.1 Test Environment and Methodology 
To determine the impact of fusing vector operations with matrix 
calculations, we ran the three calculations in Table 1 on the four 
machines in Table 2.  All tests were compiled using gcc with the  
–O3 compiler flag turned on.  The DGEMVT and GEMVER 
kernels were chosen from the updated Basic Linear Algebra 
Subprograms (BLAS) [5] and contain vector operations where the 
vector is accessed only once.  The GESUMMV operation was 
chosen because it contains vector operations where the vector is 
both accessed once and multiple times.  For DGEMVT there are 
two sets of loops that can be fused that contain vector operations.  
For the GEMVER and GESUMMV calculations, there are 
respectively four and three sets of loops that containing vector 
operations that can be fused.  All routines were chosen because 
they occur in important numerical linear algebra routines such as 
Householder Bidiagonlization [13]. 

Routines were run five times for each test of interest and 
performance differences less than 3% were considered small 
enough not to be significant.  Any differences greater than 3% 
were subjected to statistical analysis to determine if the 
differences were statistically significant at a 95% confidence 
level.  Student’s paired T-test [14] was used to compare the 
results.  Using one directional tests, our null hypothesis was that 
the results were identical and, unless the p value from running the 
comparison was less than .05, we accepted the hypothesis.  A one 
directional test means that we only consider when fusion 
improves performance.  If fusion negatively impacted the 
performance of a routine, in a statistically significant manner, then 
the hypothesis would be accepted. 

4.2 Results and Analysis 
The middle column of Table 3 shows the number of ways to fuse 
each routine with all vector operations considered.  In all cases, 
we compared the performance of fusing and not fusing each 
operation by keeping all other fusion decisions the same and only 
changing the loop we were interested in.  When a single pair of 
loops had a performance difference of more than 3%, we then 
used Student’s paired T-test to determine if the differences were 
significant.  The paired T-test was run for all pairs where the only 
difference between each routine in a pair was the fusion of the 
same vector operation. 
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For the DGEMVT and GEMVER calculations, the fusion of 
vector operations never significantly impacted routine 
performance.  On the Core 2, PowerPC and i7 machines, the 
performance differences were always less than 2%.  On the 
Opteron, differences were larger.  Using a paired t-test analysis on 
the Opteron for the four pairs of interest resulted in p values of 
0.14 to 0.68 for all pairs of interest, meaning that there was not a 
statistically significant difference in runtime for any loop pair of 
interest at the 95% confidence level. 

For the GESUMMV calculation on the Core 2, i7 and PowerPC, 
system, differences in performance was always less than 3% for 
all fusion possibilities.  On the Opteron system, however, 
performance differences were greater for vectors accessed more 
than once.  In this case, runtime differences of over 30% resulted 
as shown in Figure 2.  These differences were statistically 
significant. For vectors accessed only once, they were not 
significant with p values of 0.27 and 0.087. 
From these experiments, we conclude that the fusion of vector 
operations where each element of the vector is accessed many 
times can significantly increase performance and must be 
considered when fusing loops.  We also conclude that vector 
operations that only access elements only once do not 
significantly impact performance when fused and can be removed 
from the search space. 

 
Figure 3.  Runtime of fusing a vector operation where the 
vector is accessed n times on an Opteron system. 

5. REMOVING VECTOR OPERATIONS 
For each routine we tested there are two vector operations where 
all elements in the vector are accessed once.  Removing the fusion 
of these operations with each other and with matrix operations 
from the space of considered routines results in a 75% reduction 
in the number of routines to be tested as shown in Table 3.  For  
 

Table 3. Search Space of Routines 

Routine Name With Vector 
Operations 

Without Vector 
Operations 

DGEMVT 8 2 

GEMVER 648 162 

GESUMMV 12 3 

most routines, being able to eliminate a vector operation from the 
search space reduces the number of routines to be consider by 
approximately one half. 

To perform this reduction within the compiler, we have two 
strategies to test.  In each strategy, we would need to write code to 
determine the relative cost of various operations. One option is to 
always fuse vector operations when enumerating routines and then 
unfuse them when testing in the model empirically.  Another 
option is to only fuse vector operations with matrix operations 
when fusing the vector operation enables the fusion of matrix 
operations.  

6. CONCLUSIONS AND FUTURE WORK 
Within the BTO compiler, the largest part of the runtime is spent 
enumerating and comparing different versions of a routine.  The 
difference between some of these versions is the fusion of vector 
operations with matrix operations.  In the case where the vector 
operation accesses each element of the vector once and is fused 
with a matrix operation, there is never a statistically significant 
performance improvement from the fusion.  By removing the 
consideration of fusing vector operations when the vectors are 
accessed only once with matrix operations we will significantly 
reduce the amount of time spent enumerating and searching in the 
BTO compiler. 

To continue this work, we plan to perform an analysis of whether 
matrix-vector operations significantly impact the runtime of 
calculations when fused with matrix-matrix operations.  In this 
case, each routine accesses the same amount of data. However, for 
matrix-matrix operations access each element of the matrix many 
times while matrix-vector operations access each element once. 
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