
2010 Colorado Celebration of Women in Computing

A Statistical Approach to Reducing an Optimization
Search Space

Ian Karlin
University of Colorado at Boulder
Department of Computer Science,

430 UCB, Boulder, CO, 80309
Ian.Karlin@colorado.edu

Geoffrey Belter

University of Colorado at Boulder
Department of Electrical, Computer,
and Energy Engineering 425 UCB,

Boulder, CO, 80309
Geoffrey.Belter@colorado.edu

Erik Silkensen
University of Colorado at Boulder
Department of Computer Science,

430 UCB, Boulder, CO, 80309
Erik.Silkensen@colorado.edu

Thomas Nelson

University of Colorado at Boulder
Department of Computer Science,

430 UCB, Boulder, CO, 80309
Thomas.Nelson@colorado.edu

Jeremy G. Siek

University of Colorado at Boulder
Department of Electrical, Computer,
and Energy Engineering 425 UCB,

Boulder, CO, 80309
Jeremy.Siek@colorado.edu

Elizabeth R. Jessup
University of Colorado at Boulder
Department of Computer Science,

430 UCB, Boulder, CO, 80309
Elizabeth.Jessup@colorado.edu

Pavel Zelinsky

University of Colorado at Boulder
Department of Computer Science,

430 UCB, Boulder, CO, 80309
Pavel.Zelinsky@colorado.edu

ABSTRACT
The performance of many scientific calculations is limited by the
cost of data movement inside linear algebra kernels. We
developed a compiler called Build to Order (BTO) that tunes
kernels to reduce data movement through the memory hierarchy
resulting in large speedups. Our compiler accepts annotated
MATLAB code and outputs C code with varying levels of loop
fusion. In this paper, we present an empirical analysis of the
fusion of vector operations with matrix operations. We show
using statistical techniques that fusing vectors accessed only once
by an operation is not profitable unless doing so enables the
fusion of matrix operations. However, vectors accessed multiple
times can be profitable to fuse. We discuss the implications of
these results to the enumeration and analysis phases of the BTO
compiler, and explain how we plan to use them to reduce the
runtime of these phases.

Keywords

Performance analysis, Linear algebra, Auto-tuning

1. INTRODUCTION
Linear algebra calculations contribute significantly to the runtime
of applications in various scientific fields, such as acoustic
scattering, computational fluid dynamics, earthquake engineering,
and structural analysis [1, 9, 10, 16]. Data movement often limits
the performance of the linear algebra calculations used in these
programs [1]. Tuning these linear algebra calculations to reduce
data movement through the memory hierarchy often results in a
corresponding decrease in routine runtime [8, 13].

One technique frequently used to reduce memory traffic of linear
algebra routines is loop fusion, which combines multiple loops of

calculations that access the same data into one [12]. Combining
loops that access the same data increases the spatial and temporal
locality of data accesses. For linear algebra calculations, the
result is routines that can perform over 100% faster than
comparable unfused routines [18].

While fused routines create significant speedups, producing tuned
kernels for all routines that could benefit from fusion is
impractical because the number of kernels that would benefit is
immense. Also, constantly changing architectures require
updating these kernels often since the optimal amount of fusion
varies on different architectures.
Auto-tuning is a way to solve the issues of updating linear algebra
kernels for ever-changing machines. It has been applied to such
other mathematical kernels as fast Fourier transforms [11] and
matrix multiplication [4]. Auto-tuned codes often perform more
efficiently than hand-optimized versions of the same calculation
[19].

There are several ways to automatically create efficient fused
linear algebra calculations. Vuduc et al. produce efficient
versions of three different fused sparse matrix-vector calculations
within the Optimized Sparse Kernel Interface (OSKI) [17].
PLUTO [6] performs fusion using a general purpose compiler
within the polyhedral model for C programs. Qasem has devised
a method for general purpose Fortran codes [15].
We use a different approach to generate fused kernels. Our
compiler Build to Order (BTO) takes in a subset of MATLAB,
applies fusion to the kernels and outputs optimized kernels in C
[2]. By using MATLAB as input, we are able to generate our own
loops that traverse data structures optimally. Also, the higher
level input is easier for a user to learn and use. Finally, by using

2010 Colorado Celebration of Women in Computing

higher level input, we are able to optimize more aggressively as
we have a more global view of the calculation being performed.

Our approach differs from other automatic fusion techniques in
another meaningful way. The BTO compiler enumerates all legal
combinations of loop fusion where the loops being fused share at
least one common data element. It then compares the
performance of varying amounts of loop fusion using a hybrid
analytic/empirical search strategy. Within the hybrid approach, a
memory model first analyzes the memory traffic produced by
each version of the routine and then predicts a runtime for that
version. The best identified versions from the model are then
empirically tested with the best selected to be output in C.

One drawback of examining all versions to be fused is that the
enumeration of all possible ways to perform a loop fusion
calculation is NP-Complete [7]. For serial calculations within our
compiler exploring the entire search space has been practical. As
we add other optimizations, that need to be enumerated in
combination with loop fusion, such as blocking, and the
generation of shared memory parallel codes, the search space
continually increases. At some point it may become infeasible to
explore the entire search space.

In this paper, we show that for certain calculations we can shrink
the search space of routines considered while not sacrificing
performance of the generated routine. We perform tests on
various routines and architectures and show that, in certain cases,
the fusion of vector operations with matrix operations does not
ever statistically significantly impact routine performance. For
every vector operation removed from the search space the number
of versions of a routine enumerated is reduced in half.

The rest of this paper is organized as follows. In section 2, we
describe the BTO compiler and explain how it converts input
MATLAB into efficient C. In section 3, we show how memory
predictions often occur in groups. An analysis of the impacts of
vector operations within matrix operations is presented in section
4. The analysis includes the circumstances that the fusion of
vector operations need not be considered. Section 5 includes how
we plan to remove certain vector operations from the enumerated
search space in the BTO compiler. Finally Section 6 presents
conclusions and future work.

2. BUILD TO ORDER (BTO) COMPILER
The BTO compiler is a system that takes in a subset of annotated
MATLAB and produces optimized kernels in C [2]. Its primary
purpose is to create memory-efficient linear algebra kernels by
reducing data traffic through the memory hierarchy. To limit
memory traffic, the compiler uses two forms of loop fusion.
Another technique, data partitioning, enables two additional
features: cache blocking, which can further reduce data movement
and shared memory parallel codes [3]. BTO ensures the creation
of efficient routines by exploring the entire search space of
potentially profitable parallelization and optimization decisions.
A secondary goal of the project is ease of use. Ease of use is
accomplished by automating the creation of efficient linear
algebra routines from an accessible high level input.
The BTO compiler works in phases. In the first phase, it parses
the input MATLAB and generates a data-flow graph of that input
with loops represented. Next, it performs the refinement phase
where high level matrix and vector operations are turned into
loops and scalars. During the refinement phase a data partitioning

algorithm creates loops that are used to create shared memory
parallel code or cache blocks. Data partitioning is applied to a
single operation in a calculation and then propagated to other data
structures that share a dependency with the partitioned operation.
Once data partitioning decisions are complete, the compiler then
performs graph lowering to generate loops.
Next, the optimization phase applies loop fusion to the input
routine. First it enumerates all potentially profitable combinations
of two forms of loop fusion, interleaving and pipelining, that can
be applied to the input routine. A fusion opportunity is potentially
profitable when the loops share at least one data structure.
Interleaving involves fusing loops of two independent operations.
In this case, any data accessed by both operations are read once.
Pipelining fuses two operations where one operation consumes the
result of another. Pipelining reduces the number of data traversals
and removes the need for an intermediate array to store the result
of the first operation.
The optimization phase produces multiple versions of the input
routine. Each version differs from all others in at least one way.
The ways they can differ are the amount of fusion, parallelization,
the number of cache blocks and the sizes of the blocks. These
versions are then passed to the analytic phase.

In the evaluation phase, all versions of a routine are tested using a
two step process. First, the analytic memory model is run on all
versions, producing a sorted list of predicted runtimes. Then the
best routines are empirically tested with the fastest generated into
C code. The interaction between the two steps in the evaluation
phase is user-controllable through runtime options. The user can
select a maximum amount of time that the compiler should spend
empirically searching through routines. Also, the user can specify
that only those routines that the model predicts are within a
certain threshold of the best predicted routine are empirically
tested. The two options can be combined.

After the evaluation phase has identified the best version, the
compiler outputs the code for it. A user can then make calls to the
produced kernel within their own program.

3. SIMILAR RANKING OF ROUTINES
The enumeration of routines to be considered and the testing of
those routines using hybrid search dominate the runtime of the
BTO compiler. The model predicts small runtime differences
between routines where vector operations are fused with matrix
operations and the unfused variants. For example, for the
GESUMMV calculation shown in Table 1, the compiler
enumerates twelve possible versions with different amount of
fusion. This calculation performs two matrix vector multiplies
with the vector x multiplied by the matrices A and B. The results
of the multiplications are then multiplied by the scalars α and β
before being summed and stored in y. The model produces

Table 1. Test Routines: Greek Letters Represent Scalars,
Lower Case Letters Vectors, and Upper Case Letters Matrices

Routine Name Calculation

DGEMVT x = βATy + z
w = αAx

GEMVER
B = A + u1v1

T + u2v2
T

x = βBTy + z
w = αBx

GESUMMV y = αAx + βBx

2010 Colorado Celebration of Women in Computing

Table 2. Machine Specifications

Processor Speed Mem L1 L2 L3

Intel Core 2 2.4 GHz 4 GB 32 KB 4 MB

Intel Core i7 2.8 GHz 4 GB 32 KB 256 KB 8 MB

AMD Opteron 2.6 GHz 3 GB 64 KB 1 MB

Power PPC G5 2.3 GHz 8 GB 32 KB 512 KB

predictions for the Core 2 system shown in Table 2 that all differ
by less than 1%. Actual performance differences for the best and
worst of these versions are less than 3%.

Also, when we graph the actual and predicted runtimes for the
GEMVER calculation in Table 1 for the Core 2 system, we notice
that many of the predicted and actual runtimes of routines are
nearly identical. For many pairs of routines with near identical
performance and predictions, the only difference is the fusion of a
vector operation with a matrix operation. If this were always the
case, the creating and testing the fusion of vector operations with
matrix operations in the BTO compiler would be unnecessary.

Figure 1: Predicted vs. Actual Runtime of the 648 Version of
GEMVER Produced by the BTO Compiler

4. DETEMERNING WHICH VECTOR
OPERATIONS MATTER
In this section, a vector operation refers to the fusion of loops
where each loop accesses the same vector. For the unfused
GESUMMV calculation shown in Figure 2, there are three sets of
loops that contain vector operations that can be fused. Loops 1
and 2 can be fused with loops 4 and 5 to reduce the number of
accesses to the x vector, where each element is accessed n times.
Loops 3 and 6 can both be fused with loop 7 reducing the number
of accesses to each element of the t1 and t2 vectors by one.
To determine whether fusing vector operations with matrix
operations significantly impacts performance, we ran a series of
tests. The test results were then analyzed to determine the
significance of fusing vector operations. In this section. we first
describe the environment, routines and methodology used to

perform tests. We then present the results of these experiments
including a statistical analysis of the results when needed.

Figure 2. Unfused GESUMMV calculation.

4.1 Test Environment and Methodology
To determine the impact of fusing vector operations with matrix
calculations, we ran the three calculations in Table 1 on the four
machines in Table 2. All tests were compiled using gcc with the
–O3 compiler flag turned on. The DGEMVT and GEMVER
kernels were chosen from the updated Basic Linear Algebra
Subprograms (BLAS) [5] and contain vector operations where the
vector is accessed only once. The GESUMMV operation was
chosen because it contains vector operations where the vector is
both accessed once and multiple times. For DGEMVT there are
two sets of loops that can be fused that contain vector operations.
For the GEMVER and GESUMMV calculations, there are
respectively four and three sets of loops that containing vector
operations that can be fused. All routines were chosen because
they occur in important numerical linear algebra routines such as
Householder Bidiagonlization [13].

Routines were run five times for each test of interest and
performance differences less than 3% were considered small
enough not to be significant. Any differences greater than 3%
were subjected to statistical analysis to determine if the
differences were statistically significant at a 95% confidence
level. Student’s paired T-test [14] was used to compare the
results. Using one directional tests, our null hypothesis was that
the results were identical and, unless the p value from running the
comparison was less than .05, we accepted the hypothesis. A one
directional test means that we only consider when fusion
improves performance. If fusion negatively impacted the
performance of a routine, in a statistically significant manner, then
the hypothesis would be accepted.

4.2 Results and Analysis
The middle column of Table 3 shows the number of ways to fuse
each routine with all vector operations considered. In all cases,
we compared the performance of fusing and not fusing each
operation by keeping all other fusion decisions the same and only
changing the loop we were interested in. When a single pair of
loops had a performance difference of more than 3%, we then
used Student’s paired T-test to determine if the differences were
significant. The paired T-test was run for all pairs where the only
difference between each routine in a pair was the fusion of the
same vector operation.

2010 Colorado Celebration of Women in Computing

For the DGEMVT and GEMVER calculations, the fusion of
vector operations never significantly impacted routine
performance. On the Core 2, PowerPC and i7 machines, the
performance differences were always less than 2%. On the
Opteron, differences were larger. Using a paired t-test analysis on
the Opteron for the four pairs of interest resulted in p values of
0.14 to 0.68 for all pairs of interest, meaning that there was not a
statistically significant difference in runtime for any loop pair of
interest at the 95% confidence level.

For the GESUMMV calculation on the Core 2, i7 and PowerPC,
system, differences in performance was always less than 3% for
all fusion possibilities. On the Opteron system, however,
performance differences were greater for vectors accessed more
than once. In this case, runtime differences of over 30% resulted
as shown in Figure 2. These differences were statistically
significant. For vectors accessed only once, they were not
significant with p values of 0.27 and 0.087.
From these experiments, we conclude that the fusion of vector
operations where each element of the vector is accessed many
times can significantly increase performance and must be
considered when fusing loops. We also conclude that vector
operations that only access elements only once do not
significantly impact performance when fused and can be removed
from the search space.

Figure 3. Runtime of fusing a vector operation where the
vector is accessed n times on an Opteron system.

5. REMOVING VECTOR OPERATIONS
For each routine we tested there are two vector operations where
all elements in the vector are accessed once. Removing the fusion
of these operations with each other and with matrix operations
from the space of considered routines results in a 75% reduction
in the number of routines to be tested as shown in Table 3. For

Table 3. Search Space of Routines

Routine Name With Vector
Operations

Without Vector
Operations

DGEMVT 8 2

GEMVER 648 162

GESUMMV 12 3

most routines, being able to eliminate a vector operation from the
search space reduces the number of routines to be consider by
approximately one half.

To perform this reduction within the compiler, we have two
strategies to test. In each strategy, we would need to write code to
determine the relative cost of various operations. One option is to
always fuse vector operations when enumerating routines and then
unfuse them when testing in the model empirically. Another
option is to only fuse vector operations with matrix operations
when fusing the vector operation enables the fusion of matrix
operations.

6. CONCLUSIONS AND FUTURE WORK
Within the BTO compiler, the largest part of the runtime is spent
enumerating and comparing different versions of a routine. The
difference between some of these versions is the fusion of vector
operations with matrix operations. In the case where the vector
operation accesses each element of the vector once and is fused
with a matrix operation, there is never a statistically significant
performance improvement from the fusion. By removing the
consideration of fusing vector operations when the vectors are
accessed only once with matrix operations we will significantly
reduce the amount of time spent enumerating and searching in the
BTO compiler.

To continue this work, we plan to perform an analysis of whether
matrix-vector operations significantly impact the runtime of
calculations when fused with matrix-matrix operations. In this
case, each routine accesses the same amount of data. However, for
matrix-matrix operations access each element of the matrix many
times while matrix-vector operations access each element once.

7. ACKNOWLEDGEMENTS
The work of E. R. Jessup, I. Karlin, E. Silkensen and P. Zelinsky
is supported by National Science Foundation award CCF
0830458. The work of J. G. Siek and G. Belter is supported by
CAREER: Bridging the Gap Between Prototyping and
Production. NSF Grant Number 0846121. The work of T. Nelson
is supported by Algorithms and Software for Communication
Avoidance and Communication Hiding at the Extreme Scale
(CACHE) Institute, which is supported by the U.S. Department of
Energy (DOE) Office of Advanced Scientific Computing
Research. Argonne National Laboratory is operated for the DOE
by UChicago Argonne, LLC, under Contract No. DE-AC02-
06CH11357.

8. REFERENCES
[1] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes,

and B. F. Smith. Achieving high sustained performance in an
unstructured mesh CFD application. Supercomputing,
ACM/IEEE 1999 Conference, pages 69–81, Nov 1999.

[2] G. Belter, E. R. Jessup, I. Karlin, and J. G. Siek. Automating
the generation of composed linear algebra kernels. In SC ’09:
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pages 1–12,
New York, NY, USA, 2009. ACM.

[3] G. Belter, J. G. Siek, I. Karlin, and E. R. Jessup. Automatic
generation of tiled and parallel linear algebra routines. In the
Fifth International Workshop on Automatic Performance
Tuning (iWAPT’10), pages 1–15, June 2010.

2010 Colorado Celebration of Women in Computing

[4] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel.
Optimizing matrix multiply using PHiPAC: A portable, high-
performance, ANSI C coding methodology. In Proceedings
of the 11th International Conference on Supercomputing,
pages 340–347, New York, NY, 1997. ACM Press.

[5] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S.
Hammarling, G. Henry, M. Heroux, L. Kaufman, A.
Lumsdaine, A. Petitet, R. Pozo,K. Remington, R. C. Whaley,
An updated set of basic linear algebra subprograms (BLAS),
ACM Trans. Math. Softw. 28 (2) (2002) 135–151.

[6] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J.
Ramanujam, A. Rountev, and P. Sadayappan. Automatic
transformations for communication-minimized
parallelization and locality optimization in the polyhedral
model. In CC’08/ETAPS’08: Proceedings of the Joint
European Conferences on Theory and Practice of Software
17th International Conference on Compiler Construction,
pages 132–146, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] A. Darte. On the complexity of loop fusion. Parallel
Computing, 26:149–157, 1999.

[8] J. M. Dennis and E. R. Jessup. Applying automated memory
analysis to improve iterative algorithms. SIAM Journal on
Scientific Computing, 29(5):2210–2223, 2007.

[9] C. Farhat, A.Macedo, M.Lesoinne, A two-level domain
decomposition method for the iterative solution of high
frequency exterior Helmholtz problems, Numerische
Mathematik 85 (2000) 283–308.

[10] M. Field, Optimizing a parallel conjugate gradient solver,
SIAM J. Sci. Stat. Comput. 19(1998) 27–37.

[11] M. Frigo and S. G. Johnson, "The Design and
Implementation of FFTW3," Proceedings of the IEEE 93 (2),
216–231 (2005). In Special Issue on Program Generation,
Optimization, and Platform Adaptation.

[12] G. Gao, R. Olson, V. Sarkar, and R. Thekkath. Collective
loop fusion for array contraction. In Proceedings of the Fifth
Workshop on Languages and Compilers for Parallel
Computing, pages 281–295, New Haven, CT, Aug. 2004.

[13] G. W. Howell, J. W. Demmel, C. T. Fulton, S. Hammarling,
and K. Marmol. Cache efficient bidiagonalization using
BLAS 2.5 operators. ACM Transactions on Mathematical
Software, 34(3):14:1–14:33, 2008.

[14] R. Jain. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling, New York, 1991.
Wiley.

[15] A. Qasem. Automatic Tuning of Scientific Applications. PhD
thesis, Rice University, July 2007.

[16] B. Spencer Jr., T. Finholt, I. Foster, C. Kesselman, C.
Beldica, J. Futrelle, S. Gullapalli, P. Hubbard, L. Liming, D.
Marcusiu, L. Pearlman, C. Severance, G. Yang, NEESgrid:
A distributed collaboratory for advanced earthquake
engineering experiment and simulation, in: 13th World
Conference on Earthquake Engineering, Vancouver, B.C,
Canada, 2004, paper No. 1674

[17] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of
automatically tuned sparse matrix kernels. Journal of
Physics: Conference Series, 16:521–530, June 2005.

[18] R. Vuduc, A. Gyulassy, J. W. Demmel, and K. A. Yelick.
Memory hierarchy optimizations and performance bounds
for sparse AT Ax. In ICCS 2003: Workshop on Parallel
Linear Algebra, Melbourne, Australia, June 2003.

[19] R. C. Whaley and J. Dongarra. Automatically tuned linear
algebra software. In Proceedings of 1998 ACM/IEEE
Conference on Supercomputing (CDROM), pages 1–27,
Washington DC, 1998. IEEE Computer Society.

