
2010 Colorado Celebration of Women in Computing

Experiments with Reaction Systems
Allison Thompson Brown

University of Colorado at Boulder
430 UCB

Boulder, CO, 80309
allison.thompson@colorado.edu

ABSTRACT
Reaction systems provide functional models of real-world
interactions between biochemical reactions. The parameters of
these models can be tweaked to create systems that are predicted
to rarely die. This paper gives an overview of the reaction system
model and discusses the software we are building to
experimentally verify theoretical predications and to answer
additional questions about reaction systems. It also outlines a few
new variations for simple reaction systems that we are examining.

Keywords

natural computing, biochemical reactions, reaction systems,
random functions

1. INTRODUCTION
 Reaction systems are important because they provide a
formalized model of the biochemical reactions that are at the heart
of functionality for a living cell, a model based on assumptions
unlike those made by traditional computational models. Reaction
systems are based on the observation that the two basic
mechanisms behind the functions of biochemical reactions are
facilitation and inhibition. They are also large, discrete systems
and thus, to study them, experiments and computational
simulations are essential for expanding our knowledge. In the
course of our experimentation, we have encountered some results
that are unexpected, and unpredictable. With a few small
specifications, a simple reaction system “lifespan” is consistent in
length with that of a totally random function over a domain
roughly 75% the size of the reaction system’s domain – but
reaction systems aren’t totally random. We don’t know why this
is, or what the implications are, and that is precisely the reason
further experiments are necessary.

This paper gives an overview of the previous work with reaction
systems by Eherenfeucht, Rozenberg, and Main. It continues by
explaining the basic reaction system model, as well as discussing
other previous work in more detail. It follows by discussing the
software we are building to experimentally verify theoretical
predications and to answer additional questions about reaction
systems. It will also outline some future experiments we have
planned with new variations on simple reaction systems, which
we hope will shed new light on the reason(s) for the peculiar
lifespan of simple reaction systems.

2. RELATED WORK
Authors Ehrenfeucht and Rozenberg introduce the concept of and
notations for simple reaction systems in [4]. The formal model
that reaction systems provide for biochemical reactions and their
interactions with each other is based on a number of assumptions
and axioms that are very different -- even orthogonal -- to those

underlying traditional computational models. The model assumes
“reactions are primary, while structures are secondary” [4]. It also
assumes that “there is a ‘threshold supply’ of elements: either an
element is present and then there is ‘enough’ of it, or an element is
not present”, and therefore there is no counting in the model.
Furthermore, they assume there is no 'permanency” of elements: if
the element is not produced by a reaction within a particular cycle,
then it does not appear in the following cycle. Thus, sustaining an
element’s presence requires an effort [4].

In [2], Ehrenfeucht and Rozenberg introduce the concepts of
events and modules to reaction systems, and investigate formation
and evolution of those modules. The authors also prove that
reaction systems can be viewed as self-organizing, where the
organizing goal is to ensure a specific property of the set of all
modules (the state of a process) [3]. They also present the idea of
creating an “extended reaction systems” by adding a restriction
relation to reaction system. The restriction relation determines
which pairs of sets can form consecutive states in state sequence.
They also note that, unlike in simple reaction systems, the idea of
element permanency is intrinsic for an extend reaction system.

Ehrenfeucht and Rozenberg introduce the concept of time in
reaction systems in [3]. Specifically, within the updated
framework the notions of reaction times, compound creation,
system life span, and other similar concepts can be created and
defined.

In [1], Main, Ehrenfeucht, and Rozenberg present several
formulae and theorems for use in predicting trajectory length for
individual reaction systems in several different cases.

3. SIMPLE REACTION SYSTEMS
A reaction system is a functional model of the interaction between
biochemical reactions. A simple reaction system consists of a
number of reactions that interact with elements in the system’s
environment. It is formally defined as an ordered pair A = (S, A),
“such that S is a finite set [of elements], and A is a finite set of
reactions in S” [1, 2]. Individual reactions are made up of
reactants, inhibitors, and products. Each of a reaction’s reactants
must be present for the products to be produced, but the presence
of any of the inhibitors prevents the reaction from taking place.
Furthermore, there can be no intersection between the reactants
and the inhibitors; no element can be in both sets.
Formally, a reaction is defined as “an ordered triplet of nonempty,
finite sets a = (Ra, Ia, Pa), such that Ra ∩ Ia = ∅.” The elements
that make up the reaction’s components (reactants, inhibitors, and
products) must be drawn from the system’s environment, or
background set (called S).

The list of elements present in the environment at any given point
in a reaction system’s life is the system’s state, which we denote

2010 Colorado Celebration of Women in Computing

as M. Each such state is a subset of the background set S. In our
experiments, a reaction system begins “life” with a randomly
generated M unless otherwise specified. The set of reactions for a
system is also randomly generated, though each experiment has
some control over this process. There may be one or more types
of reaction within a reaction system; types of reactions are
described in the following paragraph.

An (r,i)-reaction is a reaction with r reactants, i inhibitors, and a
single product. So, a (3,1)-reaction is one with 3 reactants and 1
inhibitor. Reactions with multiple products can be normalized to
(r,i)-reactions as follows: let {r1, r2 . . .rR} be the set of reactants,
{i1, i2, ..., iI} be the set of inhibitors, and {p1, p2, ..., pP} the set of
products. Then P new reactions can be created, each of which has
all R reactants and I inhibitors described, but only one element
from the set of P products. Thus, the normal form for reactions is
this (r,i) form, always with a single product.

If all of a reaction’s reactants are present in the reaction system’s
state, and each inhibitor is absent, that reaction is enabled by the
state. Formally, for a reaction a, if Ia ∩ M = ∅ and Ra ⊆ M, then
we say that a is enabled by M. Each iteration of a reaction
system’s life follows the same pattern: if a reaction in the system
is enabled, its products are added to the next state. Elements not
produced by the system’s current enabled reactions are dropped
from the state, and do not carry over. There is also no concept of
an amount of an element – in each state, each element is either
present or it is not. If an element is not produced by some enabled
reaction, it will not be added to the next state.

This process is formally defined as follows: the result of a
reaction a on the next state of the system is a function
resa = 2S → 2S, such that 2S is the power-set of elements in S. So,
resa(M) = Pa if a is enabled by M, and the empty set otherwise.
Furthermore, the system’s next state is equal to the union of
resa(M) for all reactions a ∈ A.1 The state that follows M can be
denoted as A(M), also called “the effect of running the system A
one iteration on M.”

4. EXPERIMENTS WITH LIFE AND
DEATH
A system’s trajectory is a list of all states that system has visited,
including the start state. If the state is already in the trajectory, it

1 Where A is the set of reactions in a reaction system, A = (S, A).

is not added a second time. In this case, the system has entered a
loop. A system that exhibits this behavior is one that “lives”
forever, since there is no event that can cause the system to exit its
loop. Alternatively, if an empty state is reached, that system is
said to be “dead,” since there is now no way for it to have any
enabled reactions. A trajectory’s length is the number of states
that trajectory contains.

A reaction system constructed completely at random tends to die
rather than enter a trajectory loop. By using parameters based on
the approximations described in [1], it is possible to create
systems that are predicted to rarely die. Specifically, theoretical
results [1] predict that systems with n elements, 5.5n (1,3)-
reactions, and 5.5n (3,1)-reactions will quickly move to a state
with about n/2 elements and stay there, never dying. In fact, in
experiments for systems with these parameters, in all cases where
|S| ≥ 28, the system does not die.

The full results of experimenting with varying numbers of
reactions can be found in Table 1. The number of reactions is
controlled by a variable β, such that a system has βn of each
reaction type. Results are shown for a variety of β values with
fixed n = 20, with detailed results for the optimal value β = 5.5.

5. TRAJECTORY LENGTH PREDICTION
In the course of experimentation, it was also discovered that
reaction system trajectory sizes could be predicted using Donald
Knuth’s Q-function for random functions [5][6]. If random
function f is defined such that f: D→D, for a finite domain D of
size N, then its trajectory set size can be predicted by the Q-
function, such that

Furthermore, Knuth shows that Q(N) can be closely approximated
by the first term in the sum,

€

π 2N 0.5 [5].

If reaction systems behaved entirely like totally random functions
(which they are not), then their trajectory sizes could be predicted
by calculating Q(2n). From our experiments, reaction system
trajectories tend to be shorter than that prediction, but can be
predicted by calculating Q(20.74n), as is shown in figure 1. It
appears that reaction systems share some behavior with
completely random functions on domains of approximately 20.74n
elements. Our first experiment to determine the explanation for
this apparent similarity is detailed in section 5.1.

β n Number Lived
(out of 100,000)

Average
trajectory size for

those that lived

Number died
(out of 100,000)

Average trajectory
size for those that

died
2.0 20 79,562 16.7 20,438 10.7
4.0 20 99,494 132.9 546 83.4
5.5 20 99,967 257.5 33 200.8
5.5 24 99,994 681.6 6 555.7
5.5 28 100,000 1,836.4 0 —
5.5 32 100,000 5007.4 0 —
5.5 36 100,000 13,575.5 0 —
5.5 40 100,000 36,974.7 0 —
5.5 44 100,000 101,643.9 0 —
8.0 20 98,576 179.9 1,424 124.1

16.0 20 45,394 25.1 54,606 16.6
32.0 20 2,436 5.2 97,564 3.9

Table 1. Average trajectory sizes for systems varying β.

2010 Colorado Celebration of Women in Computing

Figure 1. A comparison of actual reaction system trajectory
size for N=20 to N=48 to predictions made by Q for 0.74N.

5.1 Potential Explanation: Correlation
between Background Set Elements
Our current research is investigating why the unexpected
relationship between reaction systems and totally random
functions holds. Initially, we thought that it might be the case that
the restrictions we place on the systems we generate cause a
correlation between the elements of S such that the actual size of
the background set was closer to 0.74n. That is to say, if two
elements had similar or identical reactants and inhibitors, then the
correlation of those two elements would be higher than chance. If
the correlation between them were perfect, the size of the S would
be effectively reduced to n-1. We were curious to discover if the
correlations between elements was high enough to reduce the
number of background set elements to 0.74n.

We tested our hypothesis by computing the eigenvalues for the
matrix of correlation coefficients between the elements of S. If,
for example, the matrix had i small eigenvalues and n-i large ones,
that would indicate that the actual size of S was n-i.
Unfortunately for our potential explanation, none of the systems
we tested had fewer than n eigenvalues; in fact, each had exactly
n, all of similar sizes. We could only conclude correlation
between background set elements does not explain our findings.

As a result of this, much of our current work is centered around
the exploring the Q-function quirk; specifically, we create new
types of reaction systems in order to discover if they share this
unexpected behavior, and thus to learn more about why we have
encountered these results. We also motivated to create new types
of systems because, in addition to discovering the reason for the
apparent similarity between reaction systems and totally random
functions, we would like to be able to predict trajectory lengths in
a similar fashion for randomly-generated reaction systems with
differing numbers of and varying types of reactions.

6. SOFTWARE FOR VARIATIONS ON
SIMPLE REACTION SYSTEMS
The software we’ve written to run the experiments consists of a
hierarchy of C++ classes that allows for easy experimentation
with reaction systems. The hierarchy is also designed to be easily
expandable with new system types.

The base class for the hierarchy is the “Mapping” class, which
encompasses all traits that the systems we use have in common,
such as the current state. It is subclassed by the

“UniformMapping” class and the “AbstractReactionSystem”
class.

6.1 Uniformly-Mapped Systems: The
UniformMapping Class
A system implemented by the UniformMapping class contains no
reactions, and instead mimics the behavior of a completely
random function, generating random states until it loops or creates
an empty state and the system “dies.” It is used solely for
comparative purposes, and to verify the predictions made by
Knuth’s Q-function about the length of a totally random
function’s trajectory.

6.2 Reaction System Classes
The AbstractReactionSystem class is, as its name implies, an
abstract class not intended for implementation. Instead, it provides
a common library that the classes that inherit from it can use. The
PseudoReactionSystem class and the ReactionSystem class both
inherit from the AbstractReactionSystem class.

6.2.1 Non-uniformly Mapped Systems: The
PseudoReactionSystem Class
The PseudoReactionSystem class provides an alternate way to
implement non-uniformly mapped systems. While it might seem
closer to the uniformly mapped systems described previously, it is
in fact a closer cousin to simple reaction systems. These systems
create probability tables for reaction system state sizes based on
the approximations from [1]. The initial state is randomly
generated, and subsequent state sizes are determined via look-up
in the table. So, if the current state size is i, and there is a 40%
chance, according to the table, that the next size will be j, then
there is 40% chance that the next state size will be j.

6.2.1.1 Trajectory Prediction
Pseudo-reaction systems tend to have much longer trajectories
than their simple cousins. Experimental results have shown their
trajectories to be as much as 15.1 times longer, a median of 8.67
times longer, and an average of 9.23 times longer. The Q-
function, which was some help in predicting the trajectory size for
simple reaction systems, is less useful for pseudo-reaction
systems. Though it initially appeared that pseudo-reaction systems
had trajectory sizes that converged on Q(20.93n) as n approached
infinity,2 that initial trend was disproved. After an initial plateau,
trajectory sizes continued to shrink when compared with the Q-
function. The smallest recorded size is currently approximated by
Q(20.71n), for n = 56. At that point, our results appear to indicate
that the system no longer enters a cycle. Further experimentation
will be necessary to determine if this is the case, and why such
behavior is happening, in addition to why Q drops below the
0.74n limit of the simple reaction systems.

6.2.2 Simple Reaction Systems: The ReactionSystem
Class
The ReactionSystemClass provides a way to implement a reaction
system as described in Section 2. Some of our current work
involves creating a new class to inherit from this one. We are
currently examining the effects of adding background element

2 Many thanks to the anonymous reviewer whose comments

helped me discover that my original calculations here were
incorrect.

2010 Colorado Celebration of Women in Computing

persistence to simple reaction systems in a new form of system we
call “reaction systems with duration.” These new systems are
identical in construction to simple reaction systems except for a
variable H, which determines how long each element of S remains
in the system environment after it has first been created. While it
looks as though this new system type will provide interesting new
data, our initial results have not yet been verified, and so no
substantial conclusions can be drawn.

7. FUTURE WORK
Our next steps will be to verify the initial results gathered from
experimentation with reaction systems with duration. Should our
results prove valid, we will perform further experiments to fully
explore the properties of the new system type. We will also
continue to investigate the theoretical basis for the results
described in Section 5.

8. ACKNOWLEDGMENTS
I would like to thank Dr. Andrzej Ehrenfeucht and Dr. Michael
Main for their advice and guidance of the work here described. I
would also like to thank the anonymous reviewers for their
numerous suggestions and comments.

9. REFERENCES
[1] Ehrenfeucht, A., Main, M., and Rozenberg, G. 2010.

Combinatorics of Reaction Systems. International Journal of
Foundations in Computer Science, 21, 3 (June 2010), 345-
356.

[2] Ehrenfeucht, A. and Rozenberg, G. Events and Modules in
Reaction Systems. Theoretical Computer Science. 376, 1-2
(2007), 3-16.

[3] Ehrenfeucht, A., and Rozenberg, G. Introducing Time in
Reaction Systems. Theoretical Computer Science, 410,
(2009), 310-322.

[4] Ehrenfeucht, A. and Rozenberg, G. Reaction
Systems. Fundam. Inf. 75, 1-4 (January 2007), 263-280.

[5] Knuth, D.E. The Art of Computer Programming v.1:
Fundamental Algorithms. 116-121. Addison-Wesley,
Reading, MA, 1968.

[6] Knuth, D.E. The Art of Computer Programming v. 2:
Seminumerical Algorithms. 8, 454-5.Addison-Wesley,
Reading, MA, 1969.

