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ABSTRACT 
Reaction systems provide functional models of real-world 
interactions between biochemical reactions. The parameters of 
these models can be tweaked to create systems that are predicted 
to rarely die. This paper gives an overview of the reaction system 
model and discusses the software we are building to 
experimentally verify theoretical predications and to answer 
additional questions about reaction systems. It also outlines a few 
new variations for simple reaction systems that we are examining. 
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1. INTRODUCTION 
 Reaction systems are important because they provide a 
formalized model of the biochemical reactions that are at the heart 
of functionality for a living cell, a model based on assumptions 
unlike those made by traditional computational models. Reaction 
systems are based on the observation that the two basic 
mechanisms behind the functions of biochemical reactions are 
facilitation and inhibition. They are also large, discrete systems 
and thus, to study them, experiments and computational 
simulations are essential for expanding our knowledge. In the 
course of our experimentation, we have encountered some results 
that are unexpected, and unpredictable. With a few small 
specifications, a simple reaction system “lifespan” is consistent in 
length with that of a totally random function over a domain 
roughly 75% the size of the reaction system’s domain – but 
reaction systems aren’t totally random. We don’t know why this 
is, or what the implications are, and that is precisely the reason 
further experiments are necessary. 

This paper gives an overview of the previous work with reaction 
systems by Eherenfeucht, Rozenberg, and Main. It continues by 
explaining the basic reaction system model, as well as discussing 
other previous work in more detail. It follows by discussing the 
software we are building to experimentally verify theoretical 
predications and to answer additional questions about reaction 
systems. It will also outline some future experiments we have 
planned with new variations on simple reaction systems, which 
we hope will shed new light on the reason(s) for the peculiar 
lifespan of simple reaction systems. 

2. RELATED WORK 
Authors Ehrenfeucht and Rozenberg introduce the concept of and 
notations for simple reaction systems in [4]. The formal model 
that reaction systems provide for biochemical reactions and their 
interactions with each other is based on a number of assumptions 
and axioms that are very different -- even orthogonal -- to those 

underlying traditional computational models. The model assumes 
“reactions are primary, while structures are secondary” [4]. It also 
assumes that “there is a ‘threshold supply’ of elements: either an 
element is present and then there is ‘enough’ of it, or an element is 
not present”, and therefore there is no counting in the model. 
Furthermore, they assume there is no 'permanency” of elements: if 
the element is not produced by a reaction within a particular cycle, 
then it does not appear in the following cycle. Thus, sustaining an 
element’s presence requires an effort [4]. 

In [2], Ehrenfeucht and Rozenberg introduce the concepts of 
events and modules to reaction systems, and investigate formation 
and evolution of those modules.  The authors also prove that 
reaction systems can be viewed as self-organizing, where the 
organizing goal is to ensure a specific property of the set of all 
modules (the state of a process) [3]. They also present the idea of 
creating an “extended reaction systems” by adding a restriction 
relation to reaction system. The restriction relation determines 
which pairs of sets can form consecutive states in state sequence. 
They also note that, unlike in simple reaction systems, the idea of 
element permanency is intrinsic for an extend reaction system.  

Ehrenfeucht and Rozenberg introduce the concept of time in 
reaction systems in [3]. Specifically, within the updated 
framework the notions of reaction times, compound creation, 
system life span, and other similar concepts can be created and 
defined. 

In [1], Main, Ehrenfeucht, and Rozenberg present several 
formulae and theorems for use in predicting trajectory length for 
individual reaction systems in several different cases.  

3. SIMPLE REACTION SYSTEMS 
A reaction system is a functional model of the interaction between 
biochemical reactions. A simple reaction system consists of a 
number of reactions that interact with elements in the system’s 
environment. It is formally defined as an ordered pair A = (S, A), 
“such that S is a finite set [of elements], and A is a finite set of 
reactions in S”  [1, 2]. Individual reactions are made up of 
reactants, inhibitors, and products. Each of a reaction’s reactants 
must be present for the products to be produced, but the presence 
of any of the inhibitors prevents the reaction from taking place. 
Furthermore, there can be no intersection between the reactants 
and the inhibitors; no element can be in both sets.  
Formally, a reaction is defined as “an ordered triplet of nonempty, 
finite sets a = (Ra, Ia, Pa), such that Ra ∩ Ia = ∅.” The elements 
that make up the reaction’s components (reactants, inhibitors, and 
products) must be drawn from the system’s environment, or 
background set (called S).  

The list of elements present in the environment at any given point 
in a reaction system’s life is the system’s state, which we denote 
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as M. Each such state is a subset of the background set S. In our 
experiments, a reaction system begins “life” with a randomly 
generated M unless otherwise specified. The set of reactions for a 
system is also randomly generated, though each experiment has 
some control over this process.  There may be one or more types 
of reaction within a reaction system; types of reactions are 
described in the following paragraph. 

An (r,i)-reaction is a reaction with r reactants, i inhibitors, and a 
single product. So, a (3,1)-reaction is one with 3 reactants and 1 
inhibitor. Reactions with multiple products can be normalized to 
(r,i)-reactions as follows: let {r1, r2 . . .rR} be the set of reactants, 
{i1, i2, ..., iI} be the set of inhibitors, and {p1, p2, ..., pP} the set of 
products. Then P new reactions can be created, each of which has 
all R reactants and I inhibitors described, but only one element 
from the set of P products. Thus, the normal form for reactions is 
this (r,i) form, always with a single product.  

If all of a reaction’s reactants are present in the reaction system’s 
state, and each inhibitor is absent, that reaction is enabled by the 
state. Formally, for a reaction a, if Ia ∩ M = ∅ and Ra ⊆ M, then 
we say that a is enabled by M. Each iteration of a reaction 
system’s life follows the same pattern: if a reaction in the system 
is enabled, its products are added to the next state. Elements not 
produced by the system’s current enabled reactions are dropped 
from the state, and do not carry over. There is also no concept of 
an amount of an element – in each state, each element is either 
present or it is not. If an element is not produced by some  enabled 
reaction, it will not be added to the next state.  

This process is formally defined as follows: the result of a 
reaction a on the next state of the system is a function 
resa = 2S → 2S, such that 2S is the power-set of elements in S. So, 
resa(M) = Pa if a is enabled by M, and the empty set otherwise. 
Furthermore, the system’s next state is equal to the union of 
resa(M) for all reactions a ∈ A.1 The state that follows M can be 
denoted as A(M), also called “the effect of running the system A 
one iteration on M.” 

4. EXPERIMENTS WITH LIFE AND 
DEATH 
A system’s trajectory is a list of all states that system has visited, 
including the start state. If the state is already in the trajectory, it 
                                                                    
1 Where A is the set of reactions in a reaction system, A = (S, A). 

is not added a second time. In this case, the system has entered a 
loop. A system that exhibits this behavior is one that “lives” 
forever, since there is no event that can cause the system to exit its 
loop. Alternatively, if an empty state is reached, that system is 
said to be “dead,” since there is now no way for it to have any 
enabled reactions. A trajectory’s length is the number of states 
that trajectory contains. 

A reaction system constructed completely at random tends to die 
rather than enter a trajectory loop. By using parameters based on 
the approximations described in [1], it is possible to create 
systems that are predicted to rarely die. Specifically, theoretical 
results [1] predict that systems with n elements, 5.5n (1,3)-
reactions, and 5.5n (3,1)-reactions will quickly move to a state 
with about n/2 elements and stay there, never dying.  In fact, in 
experiments for systems with these parameters, in all cases where 
|S| ≥ 28, the system does not die.  

The full results of experimenting with varying numbers of 
reactions can be found in Table 1. The number of reactions is 
controlled by a variable β, such that a system has βn of each 
reaction type.  Results are shown for a variety of β values with 
fixed n = 20, with detailed results for the optimal value β = 5.5. 

5. TRAJECTORY LENGTH PREDICTION 
In the course of experimentation, it was also discovered that 
reaction system trajectory sizes could be predicted using Donald 
Knuth’s Q-function for random functions [5][6]. If random 
function f is defined such that f: D→D, for a finite domain D of 
size N, then its trajectory set size can be predicted by the Q-
function, such that 

 

Furthermore, Knuth shows that Q(N) can be closely approximated 
by the first term in the sum, 

€ 

π 2N 0.5  [5]. 

If reaction systems behaved entirely like totally random functions 
(which they are not), then their trajectory sizes could be predicted 
by calculating Q(2n).  From our experiments, reaction system 
trajectories tend to be shorter than that prediction, but can be 
predicted by calculating Q(20.74n), as is shown in figure 1. It 
appears that reaction systems share some behavior with 
completely random functions on domains of approximately 20.74n 
elements. Our first experiment to determine the explanation for 
this apparent similarity is detailed in section 5.1.  

β  n Number Lived 
(out of 100,000) 

Average 
trajectory size for 

those that lived 

Number died 
(out of 100,000) 

Average trajectory 
size for those that 

died 
2.0 20 79,562 16.7 20,438 10.7 
4.0 20 99,494 132.9 546 83.4 
5.5 20 99,967 257.5 33 200.8 
5.5 24 99,994 681.6 6 555.7 
5.5 28 100,000 1,836.4 0 — 
5.5 32 100,000 5007.4 0 — 
5.5 36 100,000 13,575.5 0 — 
5.5 40 100,000 36,974.7 0 — 
5.5 44 100,000 101,643.9 0 — 
8.0 20 98,576 179.9 1,424 124.1 

16.0 20 45,394 25.1 54,606 16.6 
32.0 20 2,436 5.2 97,564 3.9 

Table 1. Average trajectory sizes for systems varying β. 
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Figure 1. A comparison of actual reaction system trajectory 
size for N=20 to N=48 to predictions made by Q for 0.74N. 

5.1 Potential Explanation: Correlation 
between Background Set Elements 
Our current research is investigating why the unexpected 
relationship between reaction systems and totally random 
functions holds. Initially, we thought that it might be the case that 
the restrictions we place on the systems we generate cause a 
correlation between the elements of S such that the actual size of 
the background set was closer to 0.74n. That is to say, if two 
elements had similar or identical reactants and inhibitors, then the 
correlation of those two elements would be higher than chance. If 
the correlation between them were perfect, the size of the S would 
be effectively reduced to n-1. We were curious to discover if the 
correlations between elements was high enough to reduce the 
number of background set elements to 0.74n. 

We tested our hypothesis by computing the eigenvalues for the 
matrix of correlation coefficients between the elements of S. If, 
for example, the matrix had i small eigenvalues and n-i large ones, 
that would indicate that the actual size of S was n-i.   
Unfortunately for our potential explanation, none of the systems 
we tested had fewer than n eigenvalues; in fact, each had exactly 
n, all of similar sizes. We could only conclude correlation 
between background set elements does not explain our findings. 

As a result of this, much of our current work is centered around 
the exploring the Q-function quirk; specifically, we create new 
types of reaction systems in order to discover if they share this 
unexpected behavior, and thus to learn more about why we have 
encountered these results. We also motivated to create new types 
of systems because, in addition to discovering the reason for the 
apparent similarity between reaction systems and totally random 
functions, we would like to be able to predict trajectory lengths in 
a similar fashion for randomly-generated reaction systems with 
differing numbers of and varying types of reactions. 

6. SOFTWARE FOR VARIATIONS ON 
SIMPLE REACTION SYSTEMS 
The software we’ve written to run the experiments consists of a 
hierarchy of C++ classes that allows for easy experimentation 
with reaction systems. The hierarchy is also designed to be easily 
expandable with new system types.  

The base class for the hierarchy is the “Mapping” class, which 
encompasses all traits that the systems we use have in common, 
such as the current state. It is subclassed by the 

“UniformMapping” class and the “AbstractReactionSystem” 
class. 

6.1 Uniformly-Mapped Systems: The 
UniformMapping Class 
A system implemented by the UniformMapping class contains no 
reactions, and instead mimics the behavior of a completely 
random function, generating random states until it loops or creates 
an empty state and the system “dies.” It is used solely for 
comparative purposes, and to verify the predictions made by 
Knuth’s Q-function about the length of a totally random 
function’s trajectory. 

6.2 Reaction System Classes 
The AbstractReactionSystem class is, as its name implies, an 
abstract class not intended for implementation. Instead, it provides 
a common library that the classes that inherit from it can use. The 
PseudoReactionSystem class and the ReactionSystem class both 
inherit from the AbstractReactionSystem class. 

6.2.1 Non-uniformly Mapped Systems: The 
PseudoReactionSystem Class 
The PseudoReactionSystem class provides an alternate way to 
implement non-uniformly mapped systems. While it might seem 
closer to the uniformly mapped systems described previously, it is 
in fact a closer cousin to simple reaction systems. These systems 
create probability tables for reaction system state sizes based on 
the approximations from [1]. The initial state is randomly 
generated, and subsequent state sizes are determined via look-up 
in the table. So, if the current state size is i, and there is a 40% 
chance, according to the table, that the next size will be j, then 
there is 40% chance that the next state size will be j.  

6.2.1.1 Trajectory Prediction 
Pseudo-reaction systems tend to have much longer trajectories 
than their simple cousins. Experimental results have shown their 
trajectories to be as much as 15.1 times longer, a median of 8.67 
times longer, and an average of 9.23 times longer. The Q-
function, which was some help in predicting the trajectory size for 
simple reaction systems, is less useful for pseudo-reaction 
systems. Though it initially appeared that pseudo-reaction systems 
had trajectory sizes that converged on Q(20.93n) as n approached 
infinity,2 that initial trend was disproved. After an initial plateau, 
trajectory sizes continued to shrink when compared with the Q-
function. The smallest recorded size is currently approximated by 
Q(20.71n), for n = 56. At that point, our results appear to indicate 
that the system no longer enters a cycle. Further experimentation 
will be necessary to determine if this is the case, and why such 
behavior is happening, in addition to why Q drops below the 
0.74n limit of the simple reaction systems. 

6.2.2 Simple Reaction Systems: The ReactionSystem 
Class 
The ReactionSystemClass provides a way to implement a reaction 
system as described in Section 2.  Some of our current work 
involves creating a new class to inherit from this one. We are 
currently examining the effects of adding background element 

                                                                    
2 Many thanks to the anonymous reviewer whose comments 

helped me discover that my original calculations here were 
incorrect. 
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persistence to simple reaction systems in a new form of system we 
call “reaction systems with duration.” These new systems are 
identical in construction to simple reaction systems except for a 
variable H, which determines how long each element of S remains 
in the system environment after it has first been created. While it 
looks as though this new system type will provide interesting new 
data, our initial results have not yet been verified, and so no 
substantial conclusions can be drawn.   

7. FUTURE WORK 
Our next steps will be to verify the initial results gathered from 
experimentation with reaction systems with duration. Should our 
results prove valid, we will perform further experiments to fully 
explore the properties of the new system type. We will also 
continue to investigate the theoretical basis for the results 
described in Section 5. 
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