
Conditionals

Boolean Data

A boolean is a type of data which can be one of two values:
True or False

mybool = True
print(mybool)

True

Boolean Data

A boolean is a type of data which can be one of two values:
True or False

mybool = True
print(mybool)

True

Boolean Data

A boolean is a type of data which can be one of two values:
True or False

mybool = True
print(mybool)

True

Another Kind of Equals

== is for equality testing. An expression a == b will be True iff a has the same value
as b, False otherwise.

>>> year = 2017
>>> year == 2016
False
>>> year == 2017
True

Another Kind of Equals

== is for equality testing. An expression a == b will be True iff a has the same value
as b, False otherwise.

>>> year = 2017
>>> year == 2016
False
>>> year == 2017
True

Branching

if condition:
do something

elif other_condition:
do something else

else:
do something else

Branching

Example

name = input("What is your name? ")
if name == "Jack":

print("Your name is the best!")
elif len(name) == 4:

print("Your name is 4 letters and not 'Jack'!")
else:

print("Pleased to meet you", name)

Comparison Operators

< Less than <= Less or equal == Equal
> Greater than >= Greater or equal != Not Equal

age = int(input("What is your age? "))
if age < 0:

print("I don't think so")
elif age <= 10:

print("Wow! You're young!")
elif age != 16:

print("Cool cool.")
else:

print("Sweet sixteen.")

Comparison Operators

< Less than <= Less or equal == Equal
> Greater than >= Greater or equal != Not Equal

age = int(input("What is your age? "))
if age < 0:

print("I don't think so")
elif age <= 10:

print("Wow! You're young!")
elif age != 16:

print("Cool cool.")
else:

print("Sweet sixteen.")

Indentation Denotes Scope
In Python, indentation not only provides style to help yourself and others read your
code, but also provides functionality by denoting the scope of the operation.
Consider the following example:

i was defined previously in this program
if i > 0:

print("i is positive")
if i % 2 == 0:

print("i is even")
print("hello")

print("goodbye")

1 What will be printed if i is 3?
2 What will be printed if i is -2?
3 What will be printed if i is 4?

Indentation Denotes Scope
In Python, indentation not only provides style to help yourself and others read your
code, but also provides functionality by denoting the scope of the operation.
Consider the following example:

i was defined previously in this program
if i > 0:

print("i is positive")
if i % 2 == 0:

print("i is even")
print("hello")

print("goodbye")

1 What will be printed if i is 3?
2 What will be printed if i is -2?
3 What will be printed if i is 4?

Opposite Day: Using not

not is an operator which gives the opposite boolean of what it receives. In other
words:

not False is True
not True is False

So what is not not not False?
Try in your Interactive Interpreter!

Example of using not in an if statement:

fish = input("What is your fish's name? ")
if not len(fish) > 3:

print("What a short name!")

Opposite Day: Using not

not is an operator which gives the opposite boolean of what it receives. In other
words:

not False is True
not True is False

So what is not not not False?
Try in your Interactive Interpreter!

Example of using not in an if statement:

fish = input("What is your fish's name? ")
if not len(fish) > 3:

print("What a short name!")

Opposite Day: Using not

not is an operator which gives the opposite boolean of what it receives. In other
words:

not False is True
not True is False

So what is not not not False?
Try in your Interactive Interpreter!

Example of using not in an if statement:

fish = input("What is your fish's name? ")
if not len(fish) > 3:

print("What a short name!")

Multiple Conditions: Using and and or

What if you want to test the existence of multiple conditions? This is what and and
or are for.

fav = int(input("Favorite number? "))
hate = int(input("Least favorite number? "))
if fav * hate == 63 and fav > hate and fav > 0:

print("Yeah, because 7 ate 9, right?")
elif fav % 2 != 0 or hate % 2 != 0:

print("What an odd choice.")
else:

print("Even Steven.")

Short Circuiting

and and or are evaluated left to right, and not all statements will be evaluated if they
don’t need to.
In other words, if the first part of an and is False, Python knows the statement is
False won’t bother wasting its time on the second part.
Likewise, if the first part of an or is True, Python knows the statement is True and
won’t bother wasting its time on the second part.
Computer programmers call this short-circuiting.

Practice: Short Circuiting

Which code block is more efficient, given i is even half of the time, modulus (%) is
very fast, and hardfunc takes a few seconds to compute?

if hardfunc(i) and i % 2 == 0:
print("Hello!")

if i % 2 == 0 and hardfunc(i):
print("Hello!")

Note: hardfunc is not built-in to Python, we are just using it as an imaginary example function here.

Practice: Spot the Bug(s)!

What is wrong with the snippet of code below?

pets = input("How many pets do you have? ")
if pets < 0:

print("That's impossible!")
if pets = 0:

print("Try pets sometime!")
else:

print("Can I meet them?")

Practice: Spot the Bug(s)!

Corrected code snippet:

pets = int(input("How many pets do you have? "))
if pets < 0:

print("That's impossible!")
elif pets == 0:

print("Try pets sometime!")
else:

print("Can I meet them?")

