
Decorators
Functions That Make Functions

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>

Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to mention it’s actually
named.

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>
Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42

In this case, the first style is preferred. It’s a bit easier to read, not to mention it’s actually
named.

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>
Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to mention it’s actually
named.

*args, **kwargs
Python allows you to define functions that take a variable number of positional
(*args) or keyword (**kwargs) arguments. In principle, this really just works like
tuple expansion/collection.

def crazyprinter(*args, **kwargs):
for arg in args:

print(arg)
for k, v in kwargs.items():

print("{}={}".format(k, v))

crazyprinter("hello", "cheese", bar="foo")
hello
cheese
bar=foo

*args, **kwargs
Python allows you to define functions that take a variable number of positional
(*args) or keyword (**kwargs) arguments. In principle, this really just works like
tuple expansion/collection.
def crazyprinter(*args, **kwargs):

for arg in args:
print(arg)

for k, v in kwargs.items():
print("{}={}".format(k, v))

crazyprinter("hello", "cheese", bar="foo")
hello
cheese
bar=foo

Decorators

@property as we just saw is what is called a decorator. Decorators are really just a
pretty way to wrap functions using functions that return functions.

Both the following are equivalent:
@logging
def foo(bar, baz):

return bar + baz - 42

equivalent to...
def foo(bar, baz):

return bar + baz - 42
foo = logging(foo)

Decorators

@property as we just saw is what is called a decorator. Decorators are really just a
pretty way to wrap functions using functions that return functions.
Both the following are equivalent:
@logging
def foo(bar, baz):

return bar + baz - 42

equivalent to...
def foo(bar, baz):

return bar + baz - 42
foo = logging(foo)

Defining Decorators

When defining wrapper functions, you should decorate it with wraps from functools,
this will keep attributes about the function.
from functools import wraps

def logging(func):
@wraps(func)
def wrapper(*args, **kwargs):

result = func(*args, **kwargs)
print(result)
return result

return wrapper

Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a recursive function with a
recurrence relation fast. Here’s an example:

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):

if n == 0 or n == 1:
return n

return fibonacci(n - 1) + fibonacci(n - 2)

Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a recursive function with a
recurrence relation fast. Here’s an example:
from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):

if n == 0 or n == 1:
return n

return fibonacci(n - 1) + fibonacci(n - 2)

Decorators in the Wild: Welford’s Equations

Welford’s Equations are a one-pass mean and standard deviation algorithm. One
important property is that we won’t have to store the results in a list.

Our goal will be to implement a decorator we can use like this:
@Welford
def diceroll(u):

return int(u * 6) + 1

call diceroll with some u's in (0, 1)

print(diceroll.mean, diceroll.stdev)

Decorators in the Wild: Welford’s Equations

Welford’s Equations are a one-pass mean and standard deviation algorithm. One
important property is that we won’t have to store the results in a list.
Our goal will be to implement a decorator we can use like this:
@Welford
def diceroll(u):

return int(u * 6) + 1

call diceroll with some u's in (0, 1)

print(diceroll.mean, diceroll.stdev)

Decorators in the Wild: Implementing Welford

The key here is that we can make callable objects using __call__.
from functools import update_wrapper
from math import sqrt

class Welford:
def __init__(self, f):

self.f = f
update_wrapper(self, f)
self.mean = 0
self.v = 0
self.trials = 0

def __call__(self, *args, **kwargs):
r = self.f(*args, **kwargs)
self.trials += 1
d = r - self.mean
self.v += d**2 * (self.trials - 1)/self.trials
self.mean += d/self.trials
return r

@property
def stdev(self):

return sqrt(self.v/self.trials) if self.trials else 0

More Decorator Tricks

Decorators can wrap classes as well as functions. A practical example might be
creating a decorator which adds attributes of a class to a database (a @model
decorator?)

When multiple decorators are typed, they are applied bottom-up.

More Decorator Tricks

Decorators can wrap classes as well as functions. A practical example might be
creating a decorator which adds attributes of a class to a database (a @model
decorator?)
When multiple decorators are typed, they are applied bottom-up.

