
Working with Files



The File Object

A file object is a data type we use to read and write to files. We can create a file
object using the open function.
open(filename, mode) will open the file with name filename in mode mode, and
return a file object corresponding to it.
Here is an example:

f = open("myfile", "r")



File Modes

"r" will open the file for reading

"w" will open the file for writing, removing anything from the file that already
exists
"a" will open the file for appending, keeping the file contents and adding to the
end
"r+" will open for read and write



File Modes

"r" will open the file for reading
"w" will open the file for writing, removing anything from the file that already
exists

"a" will open the file for appending, keeping the file contents and adding to the
end
"r+" will open for read and write



File Modes

"r" will open the file for reading
"w" will open the file for writing, removing anything from the file that already
exists
"a" will open the file for appending, keeping the file contents and adding to the
end

"r+" will open for read and write



File Modes

"r" will open the file for reading
"w" will open the file for writing, removing anything from the file that already
exists
"a" will open the file for appending, keeping the file contents and adding to the
end
"r+" will open for read and write



Reading Files

Calling f.read() on a file object f will read the entire file and return a string with the
contents.
Try it: type “This is my short story.” into a file named story.txt using your
text editor with a short story in it, then try and read it from the interactive interpreter:

>>> f = open("story.txt", "r")
>>> f.read()
"This is my short story.\n"

What happens if we call f.read() again?
We will be at end of file, and subsequent calls to read will return an empty string.



Reading Files

Calling f.read() on a file object f will read the entire file and return a string with the
contents.
Try it: type “This is my short story.” into a file named story.txt using your
text editor with a short story in it, then try and read it from the interactive interpreter:

>>> f = open("story.txt", "r")
>>> f.read()
"This is my short story.\n"

What happens if we call f.read() again?
We will be at end of file, and subsequent calls to read will return an empty string.



Reading a File Line-by-Line

Iterating over a file object will iterate over each line.

f = open("story.txt", "r")
for line in f:

words = line.split()
for word in words:

print(word)



Writing to Files

When a file object f was opened in either write or append mode,
f.write(some_string) will write the string some_string to the file.

Try it: Write another story, but this time from the interactive interpreter.

>>> f = open("story2.txt", "w")
>>> f.write("There once was a student...\n")



Closing Files

When you are finished with a file, you should close it with f.close(). Doing so will
free up system resources and allow other processes on your system to work with that
file.

f = open("my_file.txt", "r")
contents = f.read()
f.close() # don't forget to close



Saving Phonebook Program

Now that you have the knowledge of File I/O, you can create a phone book
program which saves and loads from a file. Try to modify our original program,
and if you need help, the solution is on the workshop website.



Don’t forget the documentation!

The Input and Output page in the official Python documentation has excellent
information and examples on using files.
These slides are nowhere near complete! Go forth and read the docs!


