
Functional Programming

Functional Programming

High-order functions

We can do a lot in very few lines
Allow us to mathematically prove our algorithms
correct, that’s better than any finite amount of unit
tests!
Decorators are a little piece of functional programming
Generator expressions are also a form of functional
programming

Functional Programming

High-order functions
We can do a lot in very few lines

Allow us to mathematically prove our algorithms
correct, that’s better than any finite amount of unit
tests!
Decorators are a little piece of functional programming
Generator expressions are also a form of functional
programming

Functional Programming

High-order functions
We can do a lot in very few lines
Allow us to mathematically prove our algorithms
correct, that’s better than any finite amount of unit
tests!

Decorators are a little piece of functional programming
Generator expressions are also a form of functional
programming

Functional Programming

High-order functions
We can do a lot in very few lines
Allow us to mathematically prove our algorithms
correct, that’s better than any finite amount of unit
tests!
Decorators are a little piece of functional programming

Generator expressions are also a form of functional
programming

Functional Programming

High-order functions
We can do a lot in very few lines
Allow us to mathematically prove our algorithms
correct, that’s better than any finite amount of unit
tests!
Decorators are a little piece of functional programming
Generator expressions are also a form of functional
programming

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>

Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to mention it’s actually
named.

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>
Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42

In this case, the first style is preferred. It’s a bit easier to read, not to mention it’s actually
named.

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>
Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to mention it’s actually
named.

min/max

min/max gets the minimum or maximum value from an iterable, optionally using a key
function to select by.

Example:

x = min(points, key=lambda p:dist(p, z))

min/max

min/max gets the minimum or maximum value from an iterable, optionally using a key
function to select by.

Example:

x = min(points, key=lambda p:dist(p, z))

zip

zip creates a iterator over the nth element of each of it’s arguments (which are
iterables).

Example:
for a, b, c in zip(list1, list2, list3):

do something

Pro Tip: Iterating over the columns of a 2D matrix
for col in zip(*M):

do something with each column

zip

zip creates a iterator over the nth element of each of it’s arguments (which are
iterables).

Example:
for a, b, c in zip(list1, list2, list3):

do something

Pro Tip: Iterating over the columns of a 2D matrix
for col in zip(*M):

do something with each column

zip

zip creates a iterator over the nth element of each of it’s arguments (which are
iterables).

Example:
for a, b, c in zip(list1, list2, list3):

do something

Pro Tip: Iterating over the columns of a 2D matrix
for col in zip(*M):

do something with each column

Other Functional Things

map(func, *iterables), which calls func(*t) for all t in zip(*iterables).
Note that map is completely unnecessary as the same can be done using generator
expressions. Under a few cases, it may be better to use map to improve readability.

reduce(func, sequence) which reduces a sequence by calling
func(func(func(a, b), c), ...). This is useful for taking the product of a
sequence (use operator.mul)

Other Functional Things

map(func, *iterables), which calls func(*t) for all t in zip(*iterables).
Note that map is completely unnecessary as the same can be done using generator
expressions. Under a few cases, it may be better to use map to improve readability.
reduce(func, sequence) which reduces a sequence by calling
func(func(func(a, b), c), ...). This is useful for taking the product of a
sequence (use operator.mul)

Recommended Reading

The Functional Programming HOWTO page in the Python documentation has
some very useful tips for functional programming.
https://docs.python.org/howto/functional.html

https://docs.python.org/howto/functional.html

