
Functions

Some Functions you Already Know

We’ve already been using functions for a while now. Here are some you already know:
print(value, ...) – Writes all of its arguments to the console on a single line
separated by spaces.

input(prompt) – Prompts a user for input and returns the string they typed.
prompt is an optional parameter.
len(sequence) – Returns the length of the provided sequence (can be a string,
list, set, or more).

Some Functions you Already Know

We’ve already been using functions for a while now. Here are some you already know:
print(value, ...) – Writes all of its arguments to the console on a single line
separated by spaces.
input(prompt) – Prompts a user for input and returns the string they typed.
prompt is an optional parameter.

len(sequence) – Returns the length of the provided sequence (can be a string,
list, set, or more).

Some Functions you Already Know

We’ve already been using functions for a while now. Here are some you already know:
print(value, ...) – Writes all of its arguments to the console on a single line
separated by spaces.
input(prompt) – Prompts a user for input and returns the string they typed.
prompt is an optional parameter.
len(sequence) – Returns the length of the provided sequence (can be a string,
list, set, or more).

Making Our Own Functions

Python allows us to make our own functions. Here is a simple example:

def greet(name):
print("Nice to meet you,", name)

We can then call the function like any other function:

greet("Alice")
greet("Bill")

Nice to meet you, Alice
Nice to meet you, Bill

Why Make Functions?

With functions, we can clean up repetitive code by
combining common features
With functions, we can hide the implementation to
the programmer to simplify programming

INPUT x

FUNCTION f

OUTPUT f(x)

Key Point
Functions provide the power of abstraction. This allows us to preform similar
operations without needing to use separately coded parts.

Indentation Still Determines Scope

def my_fun():
print("Inside my_fun!")
print("When does this print?")

my_fun()

def my_fun():
print("Inside my_fun!")

print("When does this print?")
my_fun()

Type in both Python programs and compare the output.

Variables in a Function

Variables inside a function are accessible only to that function call. Attempts to access
those variables outside the function will result in an exception.

def hello(name):
sentence = "Hello, " + name + "!"
print(sentence)

hello("John")
print(sentence) # this will cause an error

Returning from a Function

Just like input returns a string, your functions may return a value as well. Consider
the following simple example:

def add_em(x, y):
result = x + y
return result

Calling print(add_em(12,15)) would print:

27

Returning Immediately Ends a Function Call

As soon as a return statement is encountered, the function call will immediately
return and will not continue to execute.
What will this example print? Type the code into Python to check your answer.

def add_and_print(x, y):
result = x + y
return result
print("The sum is", result)

add_and_print(12, 15)

Practice: Doubling Function

Practice by writing a function that takes a list as its parameter, doubles all elements in
the list, and returns the doubled list.

def double_elements(my_list):
your code here

print(double_elements([1, 2, 3, 4]))
print(double_elements([7, 14, 21, 28, 35]))
print(double_elements([42, 42, 42]))
print(double_elements([]))

