
Generators & List Comprehensions
Iterable Functions

Generator Functions

Python provides a special kind of function which yields rather than returns. This generator
function is effectively an efficient iterable.
Consider the range function we have been using1:
def range(start, stop, step=1):

i = 0
while i < stop:

yield i
i += step

Generator functions are a certain kind of the more generic generator.

1This is actually a simplification

Generator Functions

Python provides a special kind of function which yields rather than returns. This generator
function is effectively an efficient iterable.
Consider the range function we have been using1:
def range(start, stop, step=1):

i = 0
while i < stop:

yield i
i += step

Generator functions are a certain kind of the more generic generator.

1This is actually a simplification

Generator Expressions

Generators can be written inline, these are called generator expressions.

(x + 4 for x in nums if x % 2 == 0)

There’s two parts to a generator expression:

1 Performing something for every element with for...in.
2 Selecting a subset of elements to operate on with if. This part is optional.

Generator Expressions

Generators can be written inline, these are called generator expressions.

(x + 4 for x in nums if x % 2 == 0)

There’s two parts to a generator expression:
1 Performing something for every element with for...in.

2 Selecting a subset of elements to operate on with if. This part is optional.

Generator Expressions

Generators can be written inline, these are called generator expressions.

(x + 4 for x in nums if x % 2 == 0)

There’s two parts to a generator expression:
1 Performing something for every element with for...in.
2 Selecting a subset of elements to operate on with if. This part is optional.

Expression Syntax

(expression for expr in sequence1
if condition1
for expr2 in sequence2
if condition2
for expr3 in sequence3 ...
if condition3
for exprN in sequenceN
if conditionN)

Notice the loops are evaluated outside-in.

Applications of Generator Expressions

Summing ASCII values of a string
sum(ord(c) for c in s)
Note that the double-parentheses can be omitted.

File readers
reader = (float(line) for line in f)
while processing_queue:

process(next(reader))

Hash Function pRNGs
rng = (hashfunc(x)/MAXHASH for x in count())
diceroll(next(rng))

The possibilities are endless!

Applications of Generator Expressions

Summing ASCII values of a string
sum(ord(c) for c in s)
Note that the double-parentheses can be omitted.

File readers
reader = (float(line) for line in f)
while processing_queue:

process(next(reader))

Hash Function pRNGs
rng = (hashfunc(x)/MAXHASH for x in count())
diceroll(next(rng))

The possibilities are endless!

Applications of Generator Expressions

Summing ASCII values of a string
sum(ord(c) for c in s)
Note that the double-parentheses can be omitted.

File readers
reader = (float(line) for line in f)
while processing_queue:

process(next(reader))

Hash Function pRNGs
rng = (hashfunc(x)/MAXHASH for x in count())
diceroll(next(rng))

The possibilities are endless!

Applications of Generator Expressions

Summing ASCII values of a string
sum(ord(c) for c in s)
Note that the double-parentheses can be omitted.

File readers
reader = (float(line) for line in f)
while processing_queue:

process(next(reader))

Hash Function pRNGs
rng = (hashfunc(x)/MAXHASH for x in count())
diceroll(next(rng))

The possibilities are endless!

List Comprehensions

Building lists in a syntax like generator expressions can be done simply by using square
brackets.

my_list = [x + 4 for x in nums if x % 2 == 0]

Non-comprehensive Alternative
A novice Pythonist might choose this instead:
my_list = []
for x in nums:

if x % 2 == 0:
my_list.append(x)

Why use a comprehension? It’s easier to read and faster.

List Comprehensions

Building lists in a syntax like generator expressions can be done simply by using square
brackets.

my_list = [x + 4 for x in nums if x % 2 == 0]

Non-comprehensive Alternative
A novice Pythonist might choose this instead:
my_list = []
for x in nums:

if x % 2 == 0:
my_list.append(x)

Why use a comprehension? It’s easier to read and faster.

Generic Comprehensions

The same comprehension syntax can be applied to other data structures like so:
Sets
myset = {foo(x, y) for x, y in points}

Dictionaries
mydict = {point: dist(p) for p in points}

Tuples
mytup = tuple(foo(x, y) for x, y in points)

