
Lists & The for Loop

Lists

Lists are a data structure which allow us to store ordered data. We can specify list
literals in Python using brackets.
my_list = [1, 2, "Hello", "Python"]

Specific members of a list can be accessed by specifying the zero-indexed offset in
brackets.

my_list[2] is "Hello"
my_list[0] is 1

Lists

Lists are a data structure which allow us to store ordered data. We can specify list
literals in Python using brackets.
my_list = [1, 2, "Hello", "Python"]

Specific members of a list can be accessed by specifying the zero-indexed offset in
brackets.

my_list[2] is ?

my_list[0] is 1

Lists

Lists are a data structure which allow us to store ordered data. We can specify list
literals in Python using brackets.
my_list = [1, 2, "Hello", "Python"]

Specific members of a list can be accessed by specifying the zero-indexed offset in
brackets.

my_list[2] is "Hello"

my_list[0] is 1

Lists

Lists are a data structure which allow us to store ordered data. We can specify list
literals in Python using brackets.
my_list = [1, 2, "Hello", "Python"]

Specific members of a list can be accessed by specifying the zero-indexed offset in
brackets.

my_list[2] is "Hello"
my_list[0] is ?

Lists

Lists are a data structure which allow us to store ordered data. We can specify list
literals in Python using brackets.
my_list = [1, 2, "Hello", "Python"]

Specific members of a list can be accessed by specifying the zero-indexed offset in
brackets.

my_list[2] is "Hello"
my_list[0] is 1

Why Zero-Indexed?

In lower-level programming languages, lists are stored as simply a base address in
memory, and the value in the brackets is the offset. The offset is added to the base
address to find the memory address of the item.

Address · · · 1350 1351 1352 1353 1354 · · ·
Value · · · 12 13 7 21 3 · · ·

Note: These addresses and values are just an example, not real values.

List Indexed Assignment
Lists can be changed once they are created, to do so, assign to the list at the index
desired.

mynums = [4, 5, 6]
mynums[2] = 7
print(mynums)

[4, 5, 7]

However, assignment to indices not currently in the list is not allowed. This example
will cause an error.

mynums = [4, 5, 6]
mynums[3] = 7 # bad, 3 is out of range!

List Indexed Assignment
Lists can be changed once they are created, to do so, assign to the list at the index
desired.

mynums = [4, 5, 6]
mynums[2] = 7
print(mynums)

[4, 5, 7]

However, assignment to indices not currently in the list is not allowed. This example
will cause an error.

mynums = [4, 5, 6]
mynums[3] = 7 # bad, 3 is out of range!

List Concatenation

Similar to how strings can be concatenated using the + operator, so can lists.

a = [5, 6, 7, 8]
b = ["we", "can", "concatenate"]
c = a + b
print(a)
print(b)
print(c)

[5, 6, 7, 8]
["we", "can", "concatenate"]
[5, 6, 7, 8, "we", "can", "concatenate"]

Lists in Lists

Lists can store data of any type, including lists.

nested = [[1, 2, 3], [4, 5, 6]]

Accessing and assigning is done by using another set of brackets.

print(nested[0][0])
nested[0][0] = nested[1][0]
print(nested)

1
[[4, 2, 3], [4, 5, 6]]

Lists in Lists

Lists can store data of any type, including lists.

nested = [[1, 2, 3], [4, 5, 6]]

Accessing and assigning is done by using another set of brackets.

print(nested[0][0])
nested[0][0] = nested[1][0]
print(nested)

1
[[4, 2, 3], [4, 5, 6]]

Practice: List Manipulation
Open a new program and define this variable at the top:

magiclist = [[1, 2], [3, 4], ["Oh", "Hey"]]

Then, your program should (in order):
1 Set the second element in the first list to the first element in the first list
2 Subtract 1 from the first element in the second list
3 Set the second element in the second list to the length of the second element in the third

list
4 Replace the third list with a string obtained by concatenating both elements of the third

list together
5 Replace the string (the third element of magiclist) with its length
6 Print magiclist

If all went well, your program should print [[1, 1], [2, 3], 5].

Iterating Over a List using while

Using what we know about while loops, we can iterate over a list using a counter
variable. Here is an example:
i = 0
while i < len(my_list):

print(my_list[i])
i = i + 1

If my_list was [1, 2, "Hello", "Python"], then this would print:

1
2
Hello
Python

Iterating Over a List using while

Using what we know about while loops, we can iterate over a list using a counter
variable. Here is an example:
i = 0
while i < len(my_list):

print(my_list[i])
i = i + 1

If my_list was [1, 2, "Hello", "Python"], then this would print:

1
2
Hello
Python

Iterating Over a List using for
Python provides a clean range-based construct for iterating over iterables called for.
Here’s it’s syntax:
for var_name in iterable:

do something

So here is an example of iterating over our previous list:

for item in my_list:
print(item)

1
2
Hello
Python

Iterating Over a List using for
Python provides a clean range-based construct for iterating over iterables called for.
Here’s it’s syntax:
for var_name in iterable:

do something

So here is an example of iterating over our previous list:

for item in my_list:
print(item)

1
2
Hello
Python

Generating Ranges
The generator function range creates an iterable for looping over a sequence of
numbers. The syntax is range(start, stop, step).

start is the number to start on
stop is the number to stop before
step is the amount to increment each time

for i in range(0, 5, 1):
print(i)

0
1
2
3
4

Range: step is Optional

If you do not provide step to the range function, Python will assume that you want to
increment by one every time.

Here is an example:

for i in range(0, 5):
print(i)

0
1
2
3
4

Range: start is Optional

If you do not provide start or step to the range function, Python will assume that
you want to increment by one every time and to start at zero.

Here is an example:

for i in range(5):
print(i)

0
1
2
3
4

Repeat n times

So you want to repeat something n times?

n = 5
for i in range(n):

print("Hello, World!")

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

Practice: Trace the Loops

First, trace the loop by hand and determine the output. Then, type the loop into a
Python script and run it to determine if you were correct.

Loop 4

for i in range(3):
for j in range(2):

print(i, j)

Practice: Trace the Loops

First, trace the loop by hand and determine the output. Then, type the loop into a
Python script and run it to determine if you were correct.

Loop 5

favnums = [4, 3, 1]
stats = ["my new favorite", "okay", "boring"]
for num in favnums:

for stat in stats:
print(num, "is", stat)

print("Tomorrow...")
print("I'm sticking with", favnums[1])

