
Object Oriented Programming
Making Your Own Data Types

Classes

A simple class can be defined like so:
class Point:

def __init__(self, x, y):
self.x, self.y = x, y

A few things to notice:
__init__ is the initializes the object. It’s actually what is called a magic method
All the methods of the class take a parameter self, the object you are working on

Classes

A simple class can be defined like so:
class Point:

def __init__(self, x, y):
self.x, self.y = x, y

A few things to notice:
__init__ is the initializes the object. It’s actually what is called a magic method
All the methods of the class take a parameter self, the object you are working on

Magic Methods

Magic methods are methods with certain names that allow you to bind features of
your class to certain Python features.

__init__ was the simple example we just saw.

__del__ gets called when your object gets destructed.
__lt__, __eq__, etc. allow you to define comparisons.
__len__ binds into Python’s len(·)
There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably
only one – obvious way to do it.
Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow you to bind features of
your class to certain Python features.

__init__ was the simple example we just saw.
__del__ gets called when your object gets destructed.

__lt__, __eq__, etc. allow you to define comparisons.
__len__ binds into Python’s len(·)
There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably
only one – obvious way to do it.
Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow you to bind features of
your class to certain Python features.

__init__ was the simple example we just saw.
__del__ gets called when your object gets destructed.
__lt__, __eq__, etc. allow you to define comparisons.

__len__ binds into Python’s len(·)
There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably
only one – obvious way to do it.
Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow you to bind features of
your class to certain Python features.

__init__ was the simple example we just saw.
__del__ gets called when your object gets destructed.
__lt__, __eq__, etc. allow you to define comparisons.
__len__ binds into Python’s len(·)

There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably
only one – obvious way to do it.
Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow you to bind features of
your class to certain Python features.

__init__ was the simple example we just saw.
__del__ gets called when your object gets destructed.
__lt__, __eq__, etc. allow you to define comparisons.
__len__ binds into Python’s len(·)
There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably
only one – obvious way to do it.
Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods

Magic methods are methods with certain names that allow you to bind features of
your class to certain Python features.

__init__ was the simple example we just saw.
__del__ gets called when your object gets destructed.
__lt__, __eq__, etc. allow you to define comparisons.
__len__ binds into Python’s len(·)
There’s far more than I can mention here. Read the docs!

Why do this rather than .equals(), .length() and such?
In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably
only one – obvious way to do it.
Avoid .length(), .getLength(), .size() inconsistencies

Properties

Readability counts, so Python provides a way to avoid writing “getters and setters”
when unnecessary.

In Java, it’s nearly impossible to make everything public, since changing a class to use
getters and setters would require a change of everything that interfaces with it.
Python’s properties allow you to make your variable public to begin with, and then
write getters and setters only once they are needed to actually check something.

Properties

Readability counts, so Python provides a way to avoid writing “getters and setters”
when unnecessary.
In Java, it’s nearly impossible to make everything public, since changing a class to use
getters and setters would require a change of everything that interfaces with it.

Python’s properties allow you to make your variable public to begin with, and then
write getters and setters only once they are needed to actually check something.

Properties

Readability counts, so Python provides a way to avoid writing “getters and setters”
when unnecessary.
In Java, it’s nearly impossible to make everything public, since changing a class to use
getters and setters would require a change of everything that interfaces with it.
Python’s properties allow you to make your variable public to begin with, and then
write getters and setters only once they are needed to actually check something.

Using Properties

class CameraSensor:
def __init__(self):

self.brightness = 10

def take_picture(self):
do something
return image

camera = CameraSensor()
camera.brightness = 40
camera.take_picture()

Using Properties

class CameraSensor:
def __init__(self):

self._brightness = 10

def take_picture(self):
do something
return image

@property
def brightness(self):

return self._brightness

@brightness.setter
def brightness(self, value):

if not 0 <= value <= 100:
raise ValueError

self._brightness = value

camera = CameraSensor()
camera.brightness = 40
camera.take_picture()

