
Recursion
Calling a Function from Within Itself



Recursion: What is it?

Recursive functions are functions which rely on themselves to calculate part of the
answer. Recursive functions usually have a base case that causes the recursion to end.
Here is an example as a story:

A child couldn’t sleep, so her mother told a story about a little frog,
who couldn’t sleep, so the frog’s mother told a story about a little bear,

who couldn’t sleep, so the bear’s mother told a story about a little weasel
...who fell asleep.

...and the little bear fell asleep;
...and the little frog fell asleep;

...and the child fell asleep.



Recursion: What is it?

Base Case

A child couldn’t sleep, so her mother told a story about a little frog,
who couldn’t sleep, so the frog’s mother told a story about a little bear,

who couldn’t sleep, so the bear’s mother told a story about a little weasel
...who fell asleep.

...and the little bear fell asleep;
...and the little frog fell asleep;

...and the child fell asleep.



Recursion: What is it?

Recursive Part

A child couldn’t sleep, so her mother told a story about a little frog,
who couldn’t sleep, so the frog’s mother told a story about a little bear,

who couldn’t sleep, so the bear’s mother told a story about a little weasel
...who fell asleep.

...and the little bear fell asleep;
...and the little frog fell asleep;

...and the child fell asleep.



Recursive Functions in Python
Consider the factorial operation.

n! = n × (n − 1)× (n − 2)× · · · × 1

We could define this recursively as:
Base case: 0! = 1

Recursive part: n! = n(n − 1)!

To code this as a recursive function in Python, we could do:

def fact(n):
if n == 0: # base case

return 1
return n*fact(n-1) # recursive part



Recursive Functions in Python
Consider the factorial operation.

n! = n × (n − 1)× (n − 2)× · · · × 1

We could define this recursively as:
Base case: 0! = 1

Recursive part: n! = n(n − 1)!

To code this as a recursive function in Python, we could do:

def fact(n):
if n == 0: # base case

return 1
return n*fact(n-1) # recursive part



Recursive Functions in Python
Consider the factorial operation.

n! = n × (n − 1)× (n − 2)× · · · × 1

We could define this recursively as:
Base case: 0! = 1

Recursive part: n! = n(n − 1)!

To code this as a recursive function in Python, we could do:

def fact(n):
if n == 0: # base case

return 1
return n*fact(n-1) # recursive part



Recursion in Practicality: Euclid’s GCD

The GCD of a and b is:
a if b = 0

gcd (b, a mod b) otherwise

More info about why this is so can be found at
https://en.wikipedia.org/wiki/Euclidean_algorithm

Implementation in Python:

def gcd(a, b):
if b == 0: # base case

return a
return gcd(b, a % b) # recursive part

https://en.wikipedia.org/wiki/Euclidean_algorithm


Recursion in Practicality: Euclid’s GCD

The GCD of a and b is:
a if b = 0

gcd (b, a mod b) otherwise

More info about why this is so can be found at
https://en.wikipedia.org/wiki/Euclidean_algorithm

Implementation in Python:

def gcd(a, b):
if b == 0: # base case

return a
return gcd(b, a % b) # recursive part

https://en.wikipedia.org/wiki/Euclidean_algorithm


Practice: Fibonacci Numbers

The n-th Fibonacci number, F(n), is:
n if n = 0 or n = 1

F(n − 1) + F(n − 2) otherwise

Try it yourself: Implement a Python function which calculates
the n-th Fibonacci number recursively.


