
Sets



Sets

Sets are like lists in that they are a container for multiple objects, however, they are
unordered and cannot contain multiple copies of the same object. We can specify set
literals in Python using squirly braces.
my_set = {"a", 12, "computers", "cheese"}

We can check if an item exists in a set using the in operator.
What will "cheese" in my_set evaluate to?
What will 42 in my_set evaluate to?



Sets

Sets are like lists in that they are a container for multiple objects, however, they are
unordered and cannot contain multiple copies of the same object. We can specify set
literals in Python using squirly braces.
my_set = {"a", 12, "computers", "cheese"}

We can check if an item exists in a set using the in operator.
What will "cheese" in my_set evaluate to?
What will 42 in my_set evaluate to?



Example of Using a Set

s.add(item) will add item to the set s if item is not already in s.

food = set() # this creates an empty set
while True:

line = input('Give a tasty food, blank to end: ')
if line == '':

break # exits the while loop
food.add(line)

print('You think', len(food), 'foods are tasty')

Note: Code is on website for easy copy-paste.



Example of Using a Set

s.add(item) will add item to the set s if item is not already in s.

food = set() # this creates an empty set
while True:

line = input('Give a tasty food, blank to end: ')
if line == '':

break # exits the while loop
food.add(line)

print('You think', len(food), 'foods are tasty')

Note: Code is on website for easy copy-paste.



Investigate: What types of data can a set store?

Sets may only store hashable data types.
Try to answer each of the following questions by attempting to create an example in
the interactive interpreter and seeing if you get an error.

1 Can a set contain floating point numbers?
2 Can a set contain booleans?
3 Can a set contain lists?
4 Can a list contain sets?
5 Can a set contain sets?



Sets vs. Lists

When should you choose a set over a list?

You should choose a set if you have data in which order does not matter, and
you require unique items in the structure.
You should choose a list if you have data in which order matters, and you can
have multiple copies of items in the structure.

There are certainly plenty of exceptions to the rules presented above, however, for the
scope of this class, you should be fine following these rules.



Sets vs. Lists

When should you choose a set over a list?

You should choose a set if you have data in which order does not matter, and
you require unique items in the structure.

You should choose a list if you have data in which order matters, and you can
have multiple copies of items in the structure.

There are certainly plenty of exceptions to the rules presented above, however, for the
scope of this class, you should be fine following these rules.



Sets vs. Lists

When should you choose a set over a list?

You should choose a set if you have data in which order does not matter, and
you require unique items in the structure.
You should choose a list if you have data in which order matters, and you can
have multiple copies of items in the structure.

There are certainly plenty of exceptions to the rules presented above, however, for the
scope of this class, you should be fine following these rules.



Sets vs. Lists

When should you choose a set over a list?

You should choose a set if you have data in which order does not matter, and
you require unique items in the structure.
You should choose a list if you have data in which order matters, and you can
have multiple copies of items in the structure.

There are certainly plenty of exceptions to the rules presented above, however, for the
scope of this class, you should be fine following these rules.



Set Operations

Suppose that a and b are sets. Then,
a - b is the set difference of a and b. This is the set of elements in a that are
not in b.

a & b is the set intersection of a and b. This is the set of elements that both a
and b have in common.
a | b is the set union of a and b. This is the set of elements that either a or b
or both has.



Set Operations

Suppose that a and b are sets. Then,
a - b is the set difference of a and b. This is the set of elements in a that are
not in b.
a & b is the set intersection of a and b. This is the set of elements that both a
and b have in common.

a | b is the set union of a and b. This is the set of elements that either a or b
or both has.



Set Operations

Suppose that a and b are sets. Then,
a - b is the set difference of a and b. This is the set of elements in a that are
not in b.
a & b is the set intersection of a and b. This is the set of elements that both a
and b have in common.
a | b is the set union of a and b. This is the set of elements that either a or b
or both has.



Set Operations Example

a = {1, 2, 3, 4}
b = {3, 4, 5, 6}
diff1 = a - b # {1, 2}
diff2 = b - a # {5, 6}
diff3 = a - a # empty set
inter = a & b # {3, 4}
union = a | b # {1, 2, 3, 4, 5, 6}



Practice: Set Operations
Suppose you have three children, all of them very picky eaters.

Charlie says he won’t eat fish or broccoli.
Alice says she will only eat pasta, hot dogs, or fish.
Mary says she won’t eat pasta or salad.

Define the Python sets charlie_wont, alice_will, and mary_wont. See which of
the following operations will compute what you can have for dinner tonight
({"hot dogs"}):

alice_will - charlie_wont - mary_wont
alice_will - (charlie_wont & mary_wont)
alice_will - charlie_wont | mary_wont
alice_will - (charlie_wont | mary_wont)

Lastly, see if you can come up with more of your own statements which compute what
you can have for dinner tonight.


