
Strings

Special Characters

Special characters can be inserted in a string using an escape sequence: a backslash
(\) followed by another character. Here are some common escape sequences:

\" Double Quote \\ Backslash
\n Newline \t Horizontal Tab

Here is an example of using some escape sequences:

print("Favorite Color:\n\t\"Glow in the Dark\"")

Favorite Color:
"Glow in the Dark"

Special Characters

Special characters can be inserted in a string using an escape sequence: a backslash
(\) followed by another character. Here are some common escape sequences:

\" Double Quote \\ Backslash
\n Newline \t Horizontal Tab

Here is an example of using some escape sequences:

print("Favorite Color:\n\t\"Glow in the Dark\"")

Favorite Color:
"Glow in the Dark"

Single or Double Quotes: Your Choice
Strings can be written using either single or double quotes, your choice.

primary = 'Python'
secondary = "English"

Using single quotes means no need to escape double quotes:

print('So you must be "the one"?')

Using double quotes means no need to escape single quotes:

print("Margaret's house is blue.")

Single or Double Quotes: Your Choice
Strings can be written using either single or double quotes, your choice.

primary = 'Python'
secondary = "English"

Using single quotes means no need to escape double quotes:

print('So you must be "the one"?')

Using double quotes means no need to escape single quotes:

print("Margaret's house is blue.")

Single or Double Quotes: Your Choice
Strings can be written using either single or double quotes, your choice.

primary = 'Python'
secondary = "English"

Using single quotes means no need to escape double quotes:

print('So you must be "the one"?')

Using double quotes means no need to escape single quotes:

print("Margaret's house is blue.")

Strings Are Like Lists

Strings are like lists containing characters:

myname = "Jack"
print(myname[0])

J

But unlike lists, strings cannot be modified:

myname = "Jack"
myname[0] = "T" # bad

Strings Are Like Lists

Strings are like lists containing characters:

myname = "Jack"
print(myname[0])

J

But unlike lists, strings cannot be modified:

myname = "Jack"
myname[0] = "T" # bad

Strings are Iterables!

for c in 'CSCI 101':
print(c)

C
S
C
I

1
0
1

.split()ting Strings

To separate the words in a string into a list, call .split() on it. Here is an example:

my_str = " Python is really cool"
wordlist = my_str.split()
wordlist will be ["Python", "is", ...]
for word in wordlist:

print(word)

Python
is
really
cool

.split()ting Strings
To separate the words in a string into a list, call .split() on it. Here is an example:

my_str = " Python is really cool"
wordlist = my_str.split()
wordlist will be ["Python", "is", ...]
for word in wordlist:

print(word)

The . Operator
The . operator used above is actually the accessor operator, however, most
programmers simply call it the dot operator. It allows us to use a function which is
specific to a certain data type on the object.

Splitting the Input

Remember that the input function returns a string contaning the line that the user
typed. If we want to accept multiple words per line, we must split the input.

line = input("What is your full name? ")
words = line.split()
firstname = words[0]
lastname = words[1]

