Pythonic Coding Style

A Foolish Consistency is the Hobgoblin of Little Minds

m Guido van Rossum (creator of Python) makes a point: code is read more often
than it is written, so readability counts.

= o 4 CS@Mines

A Foolish Consistency is the Hobgoblin of Little Minds

m Guido van Rossum (creator of Python) makes a point: code is read more often
than it is written, so readability counts.

m Python is one of the few languages with an official style guide (PEP-8) since there
is a huge amount of Python code out there and the language’s core principle is
readability.

= o 28 CS@Mines

A Foolish Consistency is the Hobgoblin of Little Minds

m Guido van Rossum (creator of Python) makes a point: code is read more often
than it is written, so readability counts.

m Python is one of the few languages with an official style guide (PEP-8) since there
is a huge amount of Python code out there and the language’s core principle is
readability.

m Thus, it's important to follow Python's official style whenever possible

= o 28 CS@Mines

A Foolish Consistency is the Hobgoblin of Little Minds

m Guido van Rossum (creator of Python) makes a point: code is read more often
than it is written, so readability counts.

m Python is one of the few languages with an official style guide (PEP-8) since there
is a huge amount of Python code out there and the language’s core principle is
readability.

m Thus, it's important to follow Python's official style whenever possible

Legacy Code

It should be noted that when working on a project that was started before the ages of PEP-8
(before 2001), generally they have their own style guide and you should follow that instead.
Otherwise, it would be generally considered unacceptable to not follow PEP-8.

= o 28 CS@Mines

Naming

m Python uses snake_case for variable names, function names, method names, and
module names

= o 4 CS@Mines

Naming

m Python uses snake_case for variable names, function names, method names, and
module names

m You should avoid using underscores when possible to improve readability (e.g.

randint is better than rand_int, as the naming is obvious without the
underscore).

= o 28 CS@Mines

Naming

m Python uses snake_case for variable names, function names, method names, and
module names

m You should avoid using underscores when possible to improve readability (e.g.
randint is better than rand_int, as the naming is obvious without the
underscore).

m When there are conflicts with builtin keywords and a better name is not possible,
an underscore should be appended to the variable name (e.g. class_)

= o 28 CS@Mines

Naming

m Python uses snake_case for variable names, function names, method names, and
module names

m You should avoid using underscores when possible to improve readability (e.g.
randint is better than rand_int, as the naming is obvious without the
underscore).

m When there are conflicts with builtin keywords and a better name is not possible,
an underscore should be appended to the variable name (e.g. class_)

m Class names should be typed in CapWords

= o 28 CS@Mines

Naming

m Python uses snake_case for variable names, function names, method names, and
module names

m You should avoid using underscores when possible to improve readability (e.g.
randint is better than rand_int, as the naming is obvious without the
underscore).

m When there are conflicts with builtin keywords and a better name is not possible,
an underscore should be appended to the variable name (e.g. class_)

m Class names should be typed in CapWords

m Function, method, and class names should describe the interface rather than the
implementation.

= o 28 CS@Mines

Naming

m Python uses snake_case for variable names, function names, method names, and
module names

m You should avoid using underscores when possible to improve readability (e.g.
randint is better than rand_int, as the naming is obvious without the
underscore).

m When there are conflicts with builtin keywords and a better name is not possible,
an underscore should be appended to the variable name (e.g. class_)

m Class names should be typed in CapWords

m Function, method, and class names should describe the interface rather than the
implementation.

m Private methods and variables should start with an underscore.

= o 28 CS@Mines

Indentation

As Python uses the indentation of the text to denote scope, consistency of indentation
is critically important. PEP-8 recommends the following:

m Use 4 spaces per indentation level, never use hard tabs.

= o 28 CS@Mines

Indentation

As Python uses the indentation of the text to denote scope, consistency of indentation
is critically important. PEP-8 recommends the following:

m Use 4 spaces per indentation level, never use hard tabs.

m On multiline function calls, list literals, etc., the arguments should be aligned and
indented from the rest of the text. “Hanging indent” is acceptable as well.

= o 28 CS@Mines

Indentation

As Python uses the indentation of the text to denote scope, consistency of indentation
is critically important. PEP-8 recommends the following:

m Use 4 spaces per indentation level, never use hard tabs.

m On multiline function calls, list literals, etc., the arguments should be aligned and
indented from the rest of the text. “Hanging indent” is acceptable as well.

m Multiline if /while etc. should be indented to align with the top line

= o 28 CS@Mines

Other Pet Peeves

m Keep lines to 79 characters!

!It's OK to go to 90 or 100 if everyone in your project agrees.

= o 4 CS@Mines

Other Pet Peeves

m Keep lines to 79 characters!

m Avoid extraneous whitespace inside parentheses, brackets, and braces

Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

!It's OK to go to 90 or 100 if everyone in your project agrees.

= o 28 CS@Mines

Other Pet Peeves

m Keep lines to 79 characters!

m Avoid extraneous whitespace inside parentheses, brackets, and braces

Yes: spam(ham[1], {eggs: 23})
No: spam(ham[1], { eggs: 2 })

m Don't use parentheses on if /while etc. like you might in C-like languages
Yes: if i < 3:
No: if(i < 3):

lIt's OK to go to 90 or 100 if everyone in your project agrees.

= o 28 CS@Mines

Truthiness

Anything False, zero, or an empty sequence/mapping will implicity be false, and you
should take advantage of that.

Ok:
Pythonic:

Ok:
Pythonic:

Ok:
Pythonic:

if
if
if
if
if
if

mybool == True:
mybool:

mynumber != O:
mynumber:
len(mylist) == O:
not mylist:

CS@Mines

Comments

Every comment in the source code is a personal failure of the programmer, because it
proves that he didn’t manage to express the purpose of the code fragment with the
programming language itself. — Uncle Bob

= o 4 CS@Mines

Concluding Remarks on Coding Style

Readability Counts!

No really, it is of utmost importance that Python code be readable by following the
guidelines of PEP-8. You should read through PEP-8 before getting serious with
Python.

= o 28 CS@Mines

